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ABSTRACT

In this work, we handle the problem of selection of dichotomous
items (questions with two possible answers) of a Quality of Life
(QoL) questionnaire in sub-scales (subgroup of items producing
unidimensional score). A procedure of clustering binary variables
(items) in sub-scales with nice measurement properties is proposed.
It is based on a new multidimensional Rasch model chosen in order
to guarantee some specific measurement properties to the produced
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scores. The proposed process is presented, discussed and compared
by simulations with the Mokken scale procedure (MSP). These
simulations show that this new procedure is promising, specially
when the structure of the set of binary variables is multidimensional,
even if, several drawbacks persist, specially the time of computing of
the procedure.

Key Words: Quality of life; Multidimensionality; IRT; Rasch
model; AIC; Scales.

1. INTRODUCTION

As in the field of educational testing, in Health related QoL assess-
ment, it is generally argued that QoL is simultaneously governed by
several common latent traits: it is a multidimensional concept. But, even
if existing instruments (questionnaires) are clearly divided in several sub-
scales, the data are generally analyzed using separate and independent
univariate models instead of a global multidimensional one.

In Item Response Theory (IRT) literature, there is plenty of uni-
dimensional models proposed by various different authors. At the oppo-
site side, published multidimensional models are rare and interpretation
of their parameters is often not easy.

So, it will be useful to define a multidimensional IRT model easy to
interpret. In this paper, we propose a new one: the Multidimensional
Marginally Sufficient Rasch Model (MMSRM). We show how it is a
satisfying multidimensional counterpart of the Rasch model with
similar parameters easy to interpret.

Then, we present a new explanatory procedure, based mainly on the
use of this model, to detect the relationships between the items and the
latent traits.

Finally, with the helpful of this process, we show how to build
sub-scales of items which must have, marginally, a good fit to Rasch
model, and so, allow us to the dimensionality of the data. This process
is compared by simulations to another existing empirical procedure: the
Mokken scale procedure (MSP) based on the non parametric Mokken
scales.
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2. THE IRT MODELS

2.1. Notations

The IRT allow to analyse the responses from a sample of individuals
to a bank of items, with subjective responses. Its scope of application is
subjective or imprecise measurement (educational testing, psychology,
sociology, etc . . . ). We will consider in this paper only the specific field
of QoL, which is a new and promising area of application.

QoL studies rely on questionnaires (psychometrical ‘‘tests’’ or instru-
ments used to measure the latent traits) composed of J closed questions
(items). In this paper, we consider only dichotomous items, but all the
methods and ideas introduced here can be extended to polytomous case.
The responses are coded 0 or 1: 1 is named ‘‘correct or positive answer’’
and 0 is the ‘‘uncorrected or negative answer’’.

For N individuals in a sample, the nth individual’s response to item j
is denoted by Xnj, for n ¼ 1; . . . ;N; j ¼ 1; . . . ; J.

Each subject is supposed as characterized by Q latents traits
(unobserved aspects of Qol) and each one of them is represented by an
unknown parameter Yq, q ¼ 1; . . . ;Q defined on R: a low value of Yq

represent a poor level in this quality of life continuum and vice versa.
This subject parameter can be assumed as a fixed or as a random

parameter, i.e., an unobserved random variable. In the random case,
the vector H is defined as H ¼ ðY1; . . . ;Yq; . . . ;YQÞ, and each realization
of this random vector is ‘‘attached’’ to an individual n and noted
hn ¼ ðyn1; . . . ; ynq; . . . ; ynQÞ.

The Item Response Function (IRF) of the item j is the function
PðXnj ¼ 1=hn;njÞ where nj is a set of parameters characterizing the
item j.

2.2. Assumptions

The Item Response Theory rely on three fundamental assumptions:

� Fixed dimension which indicate that the dimension of the latent
trait (Y) is known: all the responses to the items are ‘‘governed’’
(produced) by a known number of common characteristics (the
latent traits).

� Local independence which means that the answers of one given
individual to two distinct items are independent. Such definition
allow us to assume the latent as fixed as well as random parameter.
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When the latent (individual) parameter is assumed as random, local
independence just means that the variablesXnj1 andXnj2 with j1 6¼ j2
are independent conditionally to hn. Its causal interpretation can
be formulated as ‘‘all systematic covariation between items is
explained by the latent trait(s) variation’’ (Molenaar, 1995).

� Monotonicity which means that the IRF are not decreasing in
ynq; 8q ¼ 1; . . . ;Q.

2.3. The Rasch Model

Generally, only unidimensional models are used in Qol Analysis, that
is to say that the dimension is fixed to Q ¼ 1. Various unidimensional
models are used in practice, but the Rasch model (Rasch, 1960) is
certainly the most famous one. It’s the simplest model, and the easiest
to interpret. In this model, each item is characterized by an unique
parameter dj. The IRF of an item j is:

PðXnj ¼ 1=yn; djÞ ¼ expðyn � djÞ
1þ expðyn � djÞ ð1Þ

The dj parameter represent the difficulty of the item j: the more its
value is high, the more the probability to correctly respond to this item
is low for a given value of the latent trait. The Rasch model present a nice
specific property: the total individual score sn ¼

PJ
j¼1 xnj is a sufficient

statistic of the latent trait, or, in others words, the distribution of a
response vector Xn conditionally to the observed score sn is independent
of the latent trait yn.

PðXn ¼ xn=yn; sn; d1; . . . ; dJÞ ¼ PðXn ¼ xn=yn; d1; . . . ; dJÞ
PðSn ¼ sn=yn; d1; . . . ; dJÞ

¼ PðXn ¼ xn=sn; d1; . . . ; dJÞ ð2Þ

This result is a consequence of the factorization theorem applied
to the exponential family. It follows directly when one rewrite the joint
distribution of the items responses with the latent trait considered as
unknown fixed parameters. When the latent trait is considered or
assumed as random, the sufficiency of a statistics sn for the random
parameter yn is just a graphical property given by the same condi-
tional independence property: the distribution of the response vector Xn

conditionally to the observed score sn is independent of the latent trait yn.

1280 Hardouin and Mesbah



ORDER                        REPRINTS

The Rasch model is the only IRT model with this property
(Andersen, 1977). So, if we want to reduce all the information of the
J items about the latent trait in only one statistic, we use the score Sn.
On the other hand, the Rasch model is a very restrictive model and in
practice, a good fit of the data to this model is difficult to achieve.

In statistical theory, the sufficiency property, added with the
completness of the family distribution allows to get optimal estimate of
the (latent) parameter among unbiased estimators. In our knowledge,
in IRT, there is no available method of unbiased or natural estimators
of the parameters. In practice, the sufficiency property and its simplicity
is enough to justify the use of the total score as as surrogate of the latent
trait: it is good enough. So, in IRT, estimators are often obtained through
various maximum likelihood methods. They are generally biased, but
consistency and asymptotical normality is often achieved.

Traditionally, when the latent is assumed as a fixed parameter, the
difficulty parameters of the Rasch model are consistently estimated in
maximizing the conditional likelihood obtained after conditioning over
the observed total score of individuals (Andersen, 1970). When assuming
the latent trait as a random variable, these parameters can be consistently
estimated in maximizing the marginal likelihood, obtained after the inte-
gration of the joint distribution (of the items responses and of the latent
variable) over this unobserved random variable (latent). Theoretically,
any distribution can be specified. Nevertheless, generally, but not obliga-
tory, in QoL psychometrical analysis, the distribution function of this
latent variable is generally assumed as a centered Gaussian distribution
with unknown variance s2 in QoL. Then, the marginal likelihood is:

LMðs2; d1; . . . ; dJ=xÞ ¼
YN
n¼1

Z
R

YJ
j¼1

PðXnj ¼ xnj=y; djÞGðy=s2Þ dy ð3Þ

2.4. Multidimensional Models

Kelderman and Rijkes (1994) propose an analytic multidimensional
model based on a logistic form of the IRF of each item. The model permit
to consider Q common latent traits influencing the responses of J items
(Q < J). The response function of the jth item is given by:

PðXnj ¼ 1=hn; djÞ ¼
exp
�PQ

q¼1 Bjqynq � dj
�

1þ exp
�PQ

q¼1 Bjqynq � dj
� ð4Þ
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The quantities Bjq are considered as a priori known fixed integers.
The authors show that the vector of the sub-scores sn ¼
ðsn1 � � � snq � � � snQÞ, where snq are the realizations of the random variables

Snq ¼
PJ

j¼1 BjqXnj ; 8q, is a sufficient statistic of the multidimensional
latent trait hn ¼ ðyn1 � � � ynq � � � ynQÞ, that is to say that the distribution
of a vector response Xn conditionally to the vector sn is independent of
the multidimensional latent trait hn.

As, in the unidimensional Rasch Model, the difficulty parameters dj
can be consistently estimated by marginal maximum likelihood with the
vector of latent traits assumed following a given multivariate distribution.
For similar reasons as in unidimensional case, in QoL psychometrical
analysis, specification of a multivariate centered Gaussian distribution
with an unknown S variance matrix is generally preferred. Then the
obtained marginal likelihood is:

LMðS; d1; . . . ; dJ=xÞ ¼
YN
n¼1

Z
RQ

YJ
j¼1

PðXnj ¼ xnj=h; djÞGðh=SÞ dh ð5Þ

2.5. The Multidimensional Marginally Sufficient

Rasch Model (MMSRM)

Among unidimensional IRT models, the Rasch model is the most
famous, mostly because the property of sufficiency of the individual total
score for the latent trait make this model in demand. So, when someone
use the individual total score to summarize the responses of items, he
assumes, knowingly or not, that the model governing his data is a Rasch
model. In the multidimensional case, the notion of sufficiency of the
(multivariate) score on the (multivariate) latent trait is not trivial to
define. The Kelderman model is a model where the vector of sub-scores
is a sufficient statistics for the vector of latent traits: it is a ‘‘global’’
sufficiency property. A strong definition of sufficiency, that we call
‘‘marginal’’ sufficiency, is that each sub-score must be sufficient for the
corresponding latent trait. The new multidimensional family model that
we propose, in the following, verify this property: each sub-scale follow
a Rasch model and consequently, each sub-score snq is a sufficient statistic
of the corresponding latent trait ynq.

We name such family model: Multidimensional Marginally Sufficient
Rasch Model (MMSRM).

A model is constructed in using Q distinct sets of items, with each set
verifying an unidimensional Rasch model. The multidimensional latent
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trait is formed by the union of the Q scalar latent traits. The IRF of the
jth item of the sub-scale Xq is given by:

P
�
Xq

nj ¼ 1=hnq; d
ðqÞ
j

� ¼ exp
�
ynq � dðqÞj

�
1þ exp

�
ynq � dðqÞj

� ð6Þ

Here Xq
nj is the observed response of subject n to item j belonging to the

sub-scale q. The parameters dðqÞj correspond to the difficulty of the jth
item with respect to the latent trait which this item is rely.

This is not enough to specify our model; we need to add the condi-
tional independence properties which will guarantee to us the separation
of all marginal models.

First, we build a conditional model, i.e., we specify only the
conditional distribution f ðX=hÞ (distribution of the responses to items
conditional to the latent): How? This global conditional distribution is
specified by construction, as the product of the conditional distributions
fqðXq=yqÞ of the Q sub scales. Each of these conditional model is chosen
by construction as an unidimensional Rasch Model.

f ðX=hÞ ¼
YQ
q¼1

fqðXq=yqÞ ð7Þ

Then, we specify a multidimensional joint distribution GðhÞ, for the
multivariate vector of latent h ¼ ðy1; y2; . . . ; yQÞ: We choose for conveni-
ence and easiness of interpretation this joint distribution as centered
multivariate gaussian.

Then, the joint distribution of the items and the latent is given by:

f ðX ; hÞ ¼
YQ
q¼1

fqðXq=yqÞGðhÞ ð8Þ

Then, it will be straightforward to show, that, in the global
conditional model, in marginalizing the joint distribution over all other
items not included in a given sub-scale, we get a Rasch model, and then
its sufficiency property. The differences between a Kelderman model
and a MMSRM are illustrated by the Fig. 1 who present graphical
representations of these two models, and the principle of sufficiency
of the sub-scores on the latent traits in the two models.

The parameters dðqÞj , 8j ¼ 1; . . . ; J and the variance–covariance
matrix of the latent traits S can be consistently estimated by the marginal
maximum likelihood inmaximizing a quantity similar to one defined in (5).
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3. THE SELECTION OF ITEMS IN SUBSCALES

WITH THE MMSRM

3.1. Aim

In IRT, practitioners usually search to find the relationships between
items and dimensions: in others words, they search to build unidimen-
sional sub-scales. Indeed, instruments are generally subjectively defined
by psychologists, i.e., using only their a priori knowledge. Then, IRT
models are used only to confirm, using real data, some a priori assumed
relationships between the items and the latent traits: those models are
used in a confirmatory but rarely in an exploratory kind of analysis.

More and more, psychologists or practitioners, want to build
instruments objectively. They produce items using focus groups or avail-
able literature on the subject, then they search to found the various
dimensions of the instruments and relationships between items and

Figure 1. (a) The Kelderman model. (b) The MMSRM. The Kelderman model
and the MMSRM and the principle of sufficiency of the sub-scores on the latent
traits under these two models.
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dimensions, using real data. This step, of course, can also include an
a priori knowledge. Most often, they use factorial methods but the qual-
itative (binary or ordinal) nature of the items is a complication: factorial
methods deals mainly with quantitative data. More, the interpretation of
the results of factorial methods is not always obvious and the choices of
practitioners can be questionable. So, often, empirical results show that
sub-scales obtained by factor analysis don’t fit well to unidimensional
IRT models, and in particular to the Rasch model.

Several exploratory methods have been proposed to classify the items
in different dimensions. Some of them are based on factor analysis as the
Revised Modified Parallel Analysis (Budescu et al., 1997) and others
on the properties of the IRT like the Mokken scale procedure (MSP)
(Hemker et al., 1995), the DETECT method (Zhang and Stout, 1999)
or the hierarchical cluster analysis with conditional proximity measures
(HCA=CCPROX) (Roussos et al., 1998) but none of them allow to obtain
automatically sub-scales constrained to fit a Rasch model. We propose
a method based on the fit of the data to a MMSRM, because each sub-
scale of a MMSRM verify a Rasch model. We explain, in this part, the
principles of this method, and we present a set of various simulations with
a comparison between this method and the Mokken Scale Procedure.

3.2. Principles and Algorithm

We suppose that the structure of the items is simple, that is to say that
each item is related to only one latent trait (the response of one item
depend only of the value of the latent trait to which this item is related).
The number of latent traits is unknown. We want to find the partition
of items among all possible partitions who give the best fit to a MMSRM
with all the items. The fit of a model is valuated by the Akaike Information
Criterion (AIC): the model with the lower AIC is the more parsimonious
model, that is to say that this model explain the more important amount
of information compared to its number of parameters. We note lmaxðb=xÞ
the value of the maximal log-likelihood of a N-sample obtained when the
chosen model include a set of parameter, noted b, a vector of dimension k.
The Akaike criterion associated to this model and the N-sample is:

AIC ¼ �2lmaxðb=xÞ þ 2k ð9Þ

We can used the maximum value of a marginal log-likelihood as ones
defined in Eq. (5) as lmaxðb=xÞ. In a MMSRM, the b vector is composed
of the parameters of the distribution of the latent trait (the ðQ2 þQÞ=2
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components of the S matrix) and of the J difficulty parameters of the
items dðqÞj , so k ¼ J þ ðQ2 þQÞ=2.

In practice, it is not possible to compute the AIC of all the possible
partitions of items in a reasonable time, because the estimation of param-
eters of the model takes a long time, even with very fast computers. So,
we propose an iterative relatively fast process which permit first, to define
the number of latent traits, and second to find the links between the items
and the latent traits.

The main idea of the method is to compare the fit of the data
concerning the responses of an one dimensional set of items in adding
a new item in the same dimension or in an other dimension. This method
is based on the forward principle. To construct each sub-scale, we use the
following iterative process:

� At the initial step, we consider two items supposed to be uni-
dimensional: we choose the pair of items ð j1; j2Þ which have the
higher coefficient Hj1j2 of Loevinger (1948) among all the possible
pairs of items. This coefficient is used because it permit to rapidly
measure the amount of unidimensionality between two items.
The others items are classified, using the Loevinger coefficient

HS
j (1948), from the item who probably own the less to the same

dimension as the initial pair (first place) to the item who probably
own the more to this dimension (last place).

The coefficients Hj1j2 and HS
j are defined in the Appendix.

� At the step k, the item classified at the kth place is selected in the
current subscale, if the AIC of the unidimensional Rasch model
including all the already selected items and the kth item is smaller
than the AIC of the MMSRM built with all the selected items in
a first dimension and the kth item in a second dimension.

When the first subscale is obtained, we repeat the same process with
all the remaining items, and so on, until there is no more items remaining.

To allow a gain of computing time, the subscales built in a previous
step are excluded from the goodness of fit testing process when we are
building a new subscale.

3.3. Parameters of the Simulations

The proposed procedure had been empirically tested with simulated
data. We always have considered two dimensions in the simulations but
we suppose similar results with higher dimensional data. The parameters
used in the simulations are similar to ones used in a comparative study

1286 Hardouin and Mesbah



ORDER                        REPRINTS

between the procedures MSP, DETECT and HCA=CCPROX (Van
Abswoude, 2001):

� The used model to simulate data: multidimensional extensions of
the 2-PLM (two-parameters logistic model) and of the 5-PAM
(five-parameters accelerated model) – see below.

� The structure of the items (two kinds of structures: simple
structure or approximate simple structure – see below).

� The correlation coefficient r between the two simulated latent
traits (six levels: 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0).

� The strength of the relation between the items of each dimension
and the latent trait which this dimension is the more strongly
related, measured by a aq parameter (discriminating power) (three
levels: low (0.4), medium (0.7) and high (1.7)).

� The number of items in each dimension (two main cases: 7 items
per dimension or 7 items in one dimension and 14 in the other).

In a simple structure, the response variable to each item is influenced
by only one latent trait. In this case, the used extensions of the 2-PLM is:

P
�
Xq

nj ¼ 1=hn; aq; d
ðqÞ
j

� ¼ exp
�
1:7
�
aqynq � dðqÞj

��
1þ exp

�
1:7
�
aqynq � dðqÞj

�� ð10Þ

and this one of the 5-PAM is :

PðXq
nj ¼ 1=hn; a�q; d

�ðqÞ
j ; glowj ; gupj ; xjÞ

¼ glowj þ ðgupj � glowj Þ exp
�
1:7
�
a�qynq � d�ðqÞj

��
1þ exp

�
1:7
�
a�qynq � d�ðqÞj

��
 !xj

ð11Þ

with, for each item, the three parameters glowj , gupj and xj, respectively,
fixed to 0:1, 0:9 and 2. The coefficient 1:7 is a very classical coefficient
used in IRT (Van Abswoude, 2001). In an approximate simple structure,
we consider that the response to an item j of the sub-scale Xq is strongly
affect by yq and weakly by y�qq where �qq is the complementary of q in f1; 2g
(we used a coefficient of a�qq ¼ 0:2 to weight this weak link). Equations (10)
and (11), respectively, become:

PðXq
nj ¼ 1=hn; aq; aq; d

ðqÞ
j Þ ¼ exp

�
1:7
�
aqynq þ aqynq � dðqÞj

��
1þ exp

�
1:7
�
aqynq þ aqynq � dðqÞj

��
ð12Þ

Clustering Binary Variables in Subscales Extended Rasch Model 1287



ORDER                        REPRINTS

and this one of the 5-PAM is :

PðXq
nj ¼ 1=hn; a�q; a

�
q; d

�ðqÞ
j ; glowj ; gupj ; xjÞ

¼ glowj þ ðgupj � glowj Þ exp
�
1:7
�
a�qynq þ a�qynq � d�ðqÞj

��
1þ exp

�
1:7
�
a�qynq þ a�qynq � d�ðqÞj

��
0
@

1
A

xj

ð13Þ

In Eqs. (11) and (13), the parameters a�q, a
�
�qq and d�ðqÞj are computed

to obtain IRF with the same maximal slope and the same location of this
maximal slope than the IRF present in Eqs. (10) and (12) (Van Abswoude,
2001).

We easily prove than the model presented in Eq. (10) is a MMSRM
in using the random variable ~yynq ¼ 1:7aqynq and the parameters
~ddðqÞj ¼ 1:7dðqÞj . Equation (10) become:

P
�
Xq

nj ¼ 1=~hhn; ~dd
ðqÞ
j

�
¼

exp ~yynq � ~ddðqÞj

h i
1þ exp ~yynq � ~ddðqÞj

h i ð14Þ

The latent traits are simulated with a standardized multivariate
normal distribution. The difficulty parameters dj are chosen in each
dimension as the percentiles of the standardized normal distribution
(for the jth item of a given dimension q including Jq items, dðqÞj ¼
z�1 j=ðJq þ 1Þ� �

where zðxÞ is a standardized normal distribution
function). Each simulation concern 2000 of individuals. All the 360
possible combinations of the parameters used in the simulations have
been used one time.

As a consequence, in Eq. (14), the latent trait ~hh is simulated
with a centered multivariate Gaussian distribution with a variance
matrix

S ¼ ð1:7a1Þ2 1:72ra1a2

1:72ra1a2 ð1:7a2Þ2

 !

As the MMSRM is a Generalized Linear Mixed Model (GLMM)
with a logistic function as link function and Q dependent random vari-
ables, the parameters dðqÞj and S can be consistently estimated by adapted
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procedure of classical softwares as NLMIXED procedure for SAS
software or GLLAMM for Stata software.

Indeed, the jointly estimation of the items parameters dðqÞj and of
the variance matrix S is a very long process, so, to gain a considerably
amount of computing time, the parameters of the model are estimated
in two steps: at a first step, the marginal maximum likelihood estimators
of the difficulty parameters are obtained in each subscale in fitting the
data to an unidimensional Rasch model (the XTLOGIT procedure of
Stata is used); at a second time, these estimators are used in the multi-
dimensional model and the parameters of the distribution of the
multidimensional latent trait are estimated by marginal maximum like-
lihood (with the GLLAMM procedure of Stata, in approximating the
multidimensional integrals by adaptive Gaussian quadratures and in
using a quasi-Newton algorithm). It turned out that this method of
estimation, previously used by others in practice (Kelderman and Rijkes,
1994), don’t strongly affect the estimations of the parameters.

3.4. Classification of the Results

Each simulated database is submitted to the proposed procedure and
to MSP. The results of MSP depend of an arbitrary fixed threshold c.
Three different values for the threshold c are used: 0.3, 0.2 and 0.1
(Hemker et al., 1995). The first value of the threshold is one proposed
by the authors of MSP, but this value don’t always permit to select all
the items in the different subscales. The more this threshold is low, the
more the items are easily selected in the subscales, and the more the
results can be analysed from a determinate way. So the two last values
are been chosen in this aim, even if too low value for this threshold
product full of classification errors.

The simulations are classified in 7 groups, following their results, as
described in Table 1.

3.5. Analysis of the Results of the Simulations

The model used to simulate the date and the correlation between the
two original latent traits play an important role in the results of the
procedure. When we simulate the data with a MMSRM (simple structure
and extension of the 2-PLM, see Eq. (14)), the results obtained with our
procedure are very good, except when the two simulated latent traits are
confused (when r ¼ 1).
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Concerning the influence of the correlation between the two
simulated latent trait, we can separate the results in three classes
(Table 2):

� When the correlation between the two simulated latent traits is
low (inferior or equal to 0.4), the proposed procedure present
the best rate of correct results (type 1 or 2) compared with
MSP whatever the used value of the threshold c and a correct rate
of bad results (similar to MSP with c fixed to 0:2).

� When the correlation between the two simulated latent traits is
high (superior or equal to 0:6), the proposed procedure present
the best rate of correct results and a rate of bad results similar
or inferior to MSP.

� When there is two confused simulated latent traits (r ¼ 1), the
procedure is not efficient because it search to distinguish in
several subscales the items differently rely to the only one latent
trait (it is the case when the items of the two dimensions are simu-
lated with different discriminating power: a1 6¼ a2). Indeed, it is a
logical result in the Rasch model where a good fit is realized only
for items with a similar discriminating power.

Table 1. Classification of the results of the simulation.

Class Interpretation

1 The true classification of the items is found.
2 Only one item is not classified in the two first dimensions

(minor error).
3 The true classification is not found but there is no pair(s) of items who

come from the two distinct simulated dimensions who are classified
together.

4 There is one or more pair(s) of items who come from the two distinct
simulated dimensions who are classified together.

5 All the items are classified in only one dimension (it is a good results
when the correlation between the two dimensions is 1.0).

Specific results for MSP
U All the selected items are classified in only one dimension but all the

selected items come from the same simulated dimension.
N No item have been selected.

Note: With MSP, a result of type 3, 4 or 5 can represent an incomplete partition
of items.
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Logically, we note, for each procedure, better results when the discri-
minating power of the items are strong than when they are weak. In the
case where the data are simulated by a MMSRM, this phenomenon can
be interpret as the fact that the procedure give better results when the
latent traits have large dispersions, than when these dispersions are small.

CONCLUSIONS

The new procedure seems to be more efficient to class correctly all the
items than MSP, whether the data are simulated with a MMSRM, or not.
Compared to MSP, the proposed procedure had the advantages not to
depend to a threshold fixed arbitrary by the user, to detect more often
the structure of items than MSP with a rate of errors similar than MSP
with a high value of c, and to not give unspecified results.

In the case where items are relied with different strength to the latent
trait, the proposed procedure classify together items with similar discrim-
inating powers: this phenomenon is due to the fact that, in the used
model, in this procedure, each sub-scale verify a Rasch model who
suppose equal discriminating powers of all the items.

Globally, the new procedure allow to build sub-scales verifying a
Rasch model. The results are encouraging, but some drawbacks must
be reduced:

� The time of computing is the main drawback (the process with 7
items in each dimensions take about 24 h with a computer
cadenced at 120MHz and 32Mo of RAM or about 7 h with a
computer cadenced at 950MHz and 512Mo of RAM) and it
could be interesting to study others estimations techniques as
Generalized Estimating Equations (GEE) or conditional maxi-
mum likelihood to improve it.

� The rate of bad results (36% on all the simulations) could cer-
tainly be reduced in adapting the algorithm, for example in using
a stepwise instead of a forward procedure. With a stepwise proce-
dure, we remove, at each step, previously included items which
have a bad fit at the actual step (actually, only the global fit to
a Rasch model is valuated by the Akaike criterion, but the fit
of each item is never studied).

� The procedure must be extended to polytomous items, a kind of
items very current in quality of life studies. That needs to define,
when items are polytomous, a multidimensional family of models
similar to the MMSRM family.
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APPENDIX: THE LOEVINGER COEFFICIENTS

In the proposed procedure, we use the Loevinger coefficient Hj1j2 .
This index is defined by Loevinger (1948) and is an index of unidimen-
sionality. We put N the number of individuals, and Xj the random
variable who correspond to the response to the item j (with 2 possible
responses: 0 (negative response) and 1 (positive response)).

For two item j1 and j2 with PðXj1 ¼ 1Þ < PðXj2 ¼ 1Þ, we define the
quantities:

ej1j2 ¼ NP Xj1 ¼ 1;Xj2 ¼ 0
� �

and e
ð0Þ
j1j2

¼ NPðXj1 ¼ 1ÞPðXj2 ¼ 0Þ

The Loevinger coefficient between these two items is equal to:

Hj1j2 ¼ 1� ej1j2

e
ð0Þ
j1j2

The Loevinger coefficient Hj1j2 take a value of 1 if none individuals
had correctly respond to the more difficult item, and negatively respond
to the easier item. In this case, the two item measure exactly the same
concept, so this pair of items is unidimensional. It take a value near 0
if the responses to the two items are independent. In this case, the two
items don’t measure the same concept and are not unidimensional.

Loevinger too define a coefficient of integration of one item in a
scale. We note S the set of indexes of J items composing a scale:
S ¼ fj1; j2; . . . ; jJg. The Loevinger coefficient of the item k; k 62S in this
scale is equal to:

HS
k ¼ 1�

P
j2S ejkP
j2S e

ð0Þ
jk

¼
P

j2S e
ð0Þ
jk HjkP

j2S e
ð0Þ
jk

The Loevinger coefficient HS
k take a value of 1 if all the items of the

scale S and the item k exactly measure the same concept. If the scale S is
unidimensional, a value of the coefficient Hk near 0 means that the item k
don’t measure the same concept as the scale S.

The Mokken Scale Procedure (MSP) (Hemker et al., 1995) permit
to construct sub-scales verifying for each pair of items ðj1; j2Þ of each
sub-scale Hj1j2 > 0 and for each items j of the sub-scale S HS

j > c where
c is a threshold chosen by the user (the value c ¼ 0:3 is proposed by the
authors).
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