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The SASMacro-Program%AnaQol to Estimate
the Parameters of Item Responses TheoryModels

J.-B. HARDOUIN1 AND M. MESBAH2

1Laboratory of Biomathematics and Biostatistics, Faculty of
Pharmaceutical Sciences, University of Nantes, Nantes, France
2Laboratory of Theoretical and Applied Statistics, University Pierre
and Marie Curie-P6, Paris, France

The analysis of quality of life questionnaires is taking a great importance in clinical
research. Usual and general statistical packages like SAS do not allow users to
perform classical analysis of items or to estimate parameters of most used models
in this specific field: the practitioners must use various specific software to analyze
a quality of life scale. In this article, we present an easy to use SAS macro-program
that enables SAS users to obtain classical indices, usual graphical representations,
and estimation of parameters of five usual Item Response models. We illustrate
capabilities of our macro-program by presenting some practical real Quality of Life
examples.

Keywords Birnbaum model; Cronbach alpha; Infit; IRT; Items traces; OPLM;
Outfit; Partial credit model; Q1 test; Quality of life; Rasch model; Rating scale
model; SAS.

Mathematics Subject Classification Primary 62-04; Secondary 62J12.

1. Introduction

Use of quality of life scales in clinical research and epidemiology is increasing during
last decades. Item Response Theory (IRT) (van der Linden and Hambleton, 1997)
is nowadays a well-known scientific theory useful to analyze multiple categorical
subjective responses data like data we usually get in Quality of Life field. Item
Response Theory Models can be considered as specific Generalized Linear Mixed
Models (GLLM). Well-known statistical packages, like SAS, S-plus, or Stata,
have developed very recently (since the end of the 1990’s) procedures that allow
estimating the parameters of such nonlinear models. This very late coming is
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438 Hardouin and Mesbah

certainly due to the slowness of generalist software to run analysis which require
full of computer means. So, psychometricians developed, during last decades,
specific fast software. It is easier today to find, with the main search engines,
programs to export data from classical software to specific Quality of Life software
than informations to estimate parameters of Quality of Life models directly with
classical software. Today, websites of SAS or S-plus do not present solutions about
estimation of IRT Models parameters.

All SAS users of IRT Models are not psychometricians, so it is not easy for
them to get such very specific software. It is important for users to know at least the
main principles of estimation of parameters of an IRT Model, and to have access
to an automatic procedure to obtain the main indices used in quality of life. Several
recent works in this field consider the problem of the estimation of the IRT Model
parameters, but goodness-of-fit of the model is rarely evaluated by tests or other
specific indices or graphs (see for example, Christensen and Bjorner, 2003; Dorange
et al., 2003; Lee and Terry, 2005, De Boeck and Wilson, 2004).

We propose a SAS macro-program which easily and automatically provides

• main indices used in Quality of Life field like Cronbach alpha;
• various useful graphical representations including different kinds of item
traces and stepwise Cronbach Alpha Curve;

• estimation of the parameters of five IRM among the most famous (Rasch,
Birnbaum, OPLM, Partial Credit, and Rating Scale models).

Goodness-of-fit tests are proposed for dichotomous data, and the fit of
the models can be evaluated by graphical comparison of the expected and
observed Item Characteristics Curves, and INFIT and OUTFIT indices. Results
are composed of outputs of SAS procedures, specific tables, and graphical
representations. Additionally to SAS/BASE and SAS/STAT, the macro-program
needs SAS/GRAPH to draw the graphical representations.

2. Notations

The quality of life scales are sets of binary or ordinal items. The number of possible
modalities of the jth item is rj + 1, j = 1� � � � � J . The less favorable modality
according to the latent trait of each item is named the “negative response” (coded 0),
and the other modalities are named “positive responses” (coded 1 to rj). We
analyze the responses to J items for a sample of N individuals. The response of
the nth individual to the jth item is represented by the random variable Xnj with
realization xnj .

The score of the nth individual is the random variable Sn =
∑J

j=1 Xnj and the
rest-score with respect to the kth item is the random variable Snk̄ =

∑J
j=1�j �=k Xnj =

Sn − Xnk.
In IRT, the quality of life of the individuals, is represented by a random variable

� defined as a real. This random variable is named latent trait. The realization
of this random variable for the nth individual is noted �n. The Item Response
Function(s) (IRF) of the mth positive response of the jth item is the function
P�Xnj = m/�n� �j� with m = 1� � � � � rj where �j is a set of parameters characterizing
this item. The Item Characteristic Curve (ICC) is the graphical representation of the
IRF as a function of �.
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The SAS Macro-Program % AnaQol 439

3. The Classical Analysis

Classical methods (Lord and Novick, 1968) are still very popular these days in the
field of Quality of life or similar psychometrical applications. The model underlying
Cronbach’s Alpha is just a mixed one-way anova model: Xnj = �j + 	n + 
nj , where
�j is a varying fixed (non random) effect and 	n is a random effect with zero
mean and standard error �	 corresponding to subject variability. It produces the
variance of the true latent measure (�nj = �j + 	n�. 
nj is a random effect with zero
mean and standard error � corresponding to the additional measurement error.
The true measure and the error are uncorrelated: cov�	n� 
nj� = 0. This model is
called parallel model, because the regression lines relating any observed item Xj� j =
1� � � � � k and the true unique latent measure �j are parallel. These assumptions are
classical in experimental design. This model defines relationships between different
kinds of variables: the observed score Xnj , the true score �nj , and the error 
nj . It is
interesting to make some remarks about assumptions underlying this model. The
random part of the true measure of individual n is the same whatever might be
variable j. 	n does not depend on j. The model is unidimensional. One can assume
that in their structural part all variables measure the same thing (	n�.

3.1. Reliability of an Instrument

A measurement instrument gives us values that we call observed measure.
The reliability  of an instrument is defined as the ratio of the true over the observed
measure. Under the parallel model, one can show that the reliability of any variable
Xj (as an instrument to measure the true value) is given by:

 = �2
	

�2
	 + �2

which is also the constant correlation between any two variables. This coefficient is
also known as the intra-class coefficient. The reliability coefficient  can be easily
interpreted as a correlation coefficient between the true and the observed measure.

When the parallel model is assumed, the reliability of the sum of J variables
equals:

̃ = J

J+ �1− �
�

This formula is known as the Spearman–Brown formula. Its maximum likelihood
estimator, under the assumption of a normal distribution of the error and the
parallel model, is known as Cronbach’s Alpha Coefficient (CAC) (Cronbach, 1951):

	 = J

J − 1

(
1−

∑J
j=1 S

2
j

S2
tot

)

where S2
j = 1

n−1

∑n
i=1 �Xnj − Xj�

2 and S2
tot = 1

nJ−1

∑N
n=1

∑J
j=1 �Xnj − X�2.

3.2. Backward Cronbach Alpha Curve (BCAC)

The Spearman–Brown formula indicates a simple relationship between CAC and
the number of variables. It is easy to show that the CAC is an increasing function
of the number of variables. This formula is obtained under the parallel model.
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440 Hardouin and Mesbah

A step-by-step curve of CAC can be built to assess the unidimensionality of a
set of variables. The first step uses all variables to compute CAC. Then, at every
successive step, the variable which the deletion maximizes the CAC is omited. This
procedure is repeated until only two variables remains and a curve representing
the value of the CAC for each number of variables is represented (BCAC). If the
parallel model is true, increasing the number of variables increases the reliability of
the total score which is estimated by CAC. Thus, a decrease of the BCAC would
cause us to suspect strongly that a variable did not constitute a unidimensional set
with the other variables.

4. The Item Response Theory

4.1. The Parametric Item Response Models

The unidimensionality can be evaluated by the traces of the scale: the proportion
of positive responses is represented as a function of the score. For polytomous
items, cumulative traces represent the proportion of responses at least equal to a
given positive modality of the items. For each item, the cumulative traces must be
increasing curves. To drop the effect of each item, the traces can be represented as
a function of the rest-score.

The IRM (van der Linden and Hambleton, 1997) can be considered as specific
Generalized Linear Mixed Models (GLMM): the latent trait (Quality of life, health
status, etc.) is frequently seen as a random variable. In this theory, the IRF are
modeled as a function of the latent trait (characterizing the individuals), and of
parameters characterizing the items (the vector of parameters �j for the jth item).

One of the IRT fundamental assumptions is that item responses of individuals
with the same latent value are independent (local independency assumption). So the
joint distribution of the response variables conditional to the latent variable � can
be written

P�Xn = xn/�n� �1� � � � � �J � =
J∏

j=1

P�Xnj = xnj/�n� �j�� (4.1)

Assuming that the distribution function G of the latent trait � is a Gaussian
distribution (with parameters ��� �2�), the contribution of a person n (Baker, 1992)
to the likelihood can be obtained by:

LMn��� �
2� �1� � � � � �J/xn� =

∫
IR
P�Xn = xn/�� �1� � � � � �J �G��/�� �2�d� (4.2)

which is known as the marginal likelihood of a person n.
The maximization of the quantity

LM��� �
2� �1� � � � � �J/x� =

N∏
n=1

LMn��� �
2� �1� � � � � �J/xn� (4.3)

allows obtaining the marginal maximum likelihood estimators of the parameters.
Excepted for the Rasch model family (Fisher and Molenaar, 1995) where a nice
sufficiency property allows using another likelihood (conditional likelihood), this
method is the main way to obtain consistent estimations of parameters in latent
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The SAS Macro-Program % AnaQol 441

trait models. The SAS NLMIXED procedure (SAS Institute Inc., 1999) estimates
the parameters in this way.

4.2. Structure of the Data

Classically, the responses to a quality of life questionnaire are stored in a file
containing a row per individual, and a column per item. But this format is
unadapted to fit a GLMM: indeed, the dependant variable in a GLMM will
be the responses to the items of the individuals xnj� n = 1� � � � � N� j = 1� � � � � J .
The independent variables are the level of the latent trait of each individual (�n� n =
1� � � � � N ) and the items (characterized by the vector of parameters �j� j = 1� � � � � J ).

To explain the responses of the individuals by a set of parameters characterizing
each item, a dummy variable for each of them is created: the parameter(s)
corresponding to each dummy variable is(are) the items parameter(s). The dummy
variables corresponding to the kth item is noted Ckj with realizations ckk = 1 and
ckj = 0 if j �= k. There is as many dummy variables as items (J ).

The structure of the data must be similar to one presented in the Table 1.
Let �j a parameter characterizing an item j, j = 1 � � � J , so �j =

∑J
k=1 ckj�k.

4.3. The Rasch Model

The Rasch model (Rasch, 1960) is the most famous IRM. Each item is characterized
by only one parameter (the difficulty of the item, �j). In this model, the IRF of the
jth item is written:

P�Xnj = 1/�n� �j� =
e�n−�j

1+ e�n−�j
(4.4)

If we consider the Rasch model as a logistic model, the linear predictor is
�n − �j = �n −

∑J
k=1 ckj�k. So, in such a model with all the dummy variables Ckj ,

k = 1 � � � J as independent variables, the parameter corresponding to the variable Ckj

is �k.

Table 1
Structure of data to estimate the parameters of IRM with the

NLMIXED SAS procedure

Ind Item Response c1 c2 · · · cJ
(n) (j) (xnj) (c1j) (c2j) (cJj)

1 1 0 1 0 0′ 0
1 2 1 0 1 0′ 0
1 3 0 0 0 1 0′ 0
· · · · · · · · · · · · · · · · · · · · ·
1 j 1 0 0 0′ 1 0′ 0
· · · · · · · · · · · · · · · · · · · · ·
1 J 0 0 0 0′ 1
2 1 0 1 0 0′ 0
· · · · · · · · · · · · · · · · · · · · ·
N J 1 0 0 0′ 1
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442 Hardouin and Mesbah

With the NLMIXED SAS procedure, by considering � as a random variable
with a normal distribution with parameter ��� �2�, the parameters of the Rasch
model can be estimated by adding an identifiability constraint; for example, � = 0,
with the command:

proc NLMIXED data=table;
eta=theta-(beta1*c1+beta2*c2...+betaJ*cJ);
expeta=exp(eta);
p=expeta/(1+expeta);
model response˜binary(p);
random theta˜normal(0,sigma*sigma) subject=ind;
run;

4.4. The Birnbaum Model

The Birnbaum model (Lord and Novick, 1968) considers two parameters per item:
the difficulty (�j) and the discriminating power (	j�. In this model, the IRF of the
jth item is written:

P�Xnj = 1/�n� 	j� �j� =
e	j��n−�j�

1+ e	j��n−�j�
� (4.5)

If we consider the Birnbaum model as a logistic model, the linear predictor is
	j��n − �j� = �

∑J
k=1 ckj	k���n − �

∑J
k=1 ckj�k��. An identifiability constrainst must be

applied on the 	 parameters, for example 	1 = 1.
Under the NLMIXED SAS procedure, when considering � as a random

variable, the parameters of the Birnbaum model can be estimated by using the
program:

proc NLMIXED data=table;
disc=c1+alpha2*c2...+alphaJ*cJ;
eta=theta-(beta1*c1+beta2*c2...+betaJ*cJ);
expeta=exp(disc*(eta));
p=expeta/(1+expeta);
model response˜binary(p);
random theta˜normal(0,sigma*sigma) subject=ind;
run;

4.5. The One Parameter Logistic Model

The OPLM (Fisher and Molenaar, 1995) can be considered as a Birnbaum model
where the discriminating powers are known a priori and denoted Bj for the jth item.
Under the NLMIXED SAS procedure, considering � as a random variable, the
parameters of the OPLM can be estimated by using the same program than for the
Birnbaum model, by replacing the references to the 	j parameters by the values of
the Bj . All the parameters of the OPLM are identifiable.

4.6. The Partial Credit Model

The Partial Credit Model (Fisher and Molenaar, 1995) allows analyzing responses
to ordinal items. This model considers one parameter per positive response to each
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The SAS Macro-Program % AnaQol 443

item: an item j with rj positive responses is characterized by rj parameters. The IRF
of the mth modality of the jth item are written (17) ∀m = 1� � � � � rj :

P�Xnj = m/�n� �j1� � � � � �jrj
� = exp�m�n −

∑m
l=1 �jl�

1+∑rj
k=1 exp�k�n −

∑k
l=1 �jl�

� (4.6)

The response variable Xnj follows no more a Bernoulli distribution as
in the dichotomous models but a multinomial distribution with parameters
�1� Pnj0� Pnj1� � � � � Pnjrj

�. The NLMIXED procedure do not propose this type of
distribution so, we must define the general log-likelihood associated to each
individual. With SAS, the parameters of the Partial Credit Model can be estimated
by using the following code (where R is the maximal modality among all the items):

proc NLMIXED data=table;
eta1=beta11*c1+beta21*c2...+betaJ1*cJ;
eta2=beta12*c1+beta22*c2...+betaJ2*cJ;
...
etaR=beta1R*c1+beta2R*c2...+betaJR*cJ;
D=1+exp(theta-eta1)+exp(2*theta-eta1-eta2)
+...+exp(R*theta-eta1-eta2-...-etaR);

if response=0 then z=1/D;
if response=1 then z=exp(theta-eta1)/D;
if response=2 then z=exp(2*theta-eta1-eta2)/D;
...
if response=R then z=exp(R*theta-eta1-eta2-...-etaR)/D;
ll=log(z);

model response˜general(ll);
random theta˜normal(0,sigma*sigma) subject=ind;
run;

All the parameters are identifiable if there are at least two responses in the data
for each modality of each item. If all the items do not have the same number of
levels, the references to the missing levels must be omitted.

4.7. The Rating Scale Model

The Rating Scale Model (Fisher and Molenaar, 1995) is a model to analyze response
to ordinal items too. This model can be considered as a particular case of the Partial
Credit Model with the same number of levels for all the items: ∀j� rj = R. This
model consider one parameter per item and one parameter for each positive level
different than 1.

The IRF of the mth modality of the jth item is written:

P�Xnj = m/�n� �j1� �1� � � � � �R� =
exp�m��n − �j1�−

∑m
l=2 �l�

1+∑R
k=1 exp�k��n − �j1�−

∑k
l=2 �l�

(4.7)

∀m = 1� � � � � R. With SAS, the parameters of the Rating Scale Model can be
estimated with:

proc NLMIXED data=table;
eta=beta11*c1+beta21*c2...+betaJ1*cJ;
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444 Hardouin and Mesbah

D=1+exp(theta-eta)+exp(2*(theta-eta)-tau2)
+...+exp(R*(theta-eta)-tau1-tau2-...-tauR);

if response=0 then z=1/D;
if response=1 then z=exp(theta-eta)/D;
if response=2 then z=exp(2*(theta-eta)-tau2)/D;
...
if response=R then z=exp(R*(theta-eta1)-tau2-...-tauR)/D;
ll=log(z);
model response˜general(ll);
random theta˜normal(0,sigma*sigma) subject=ind;
run;

All the parameters are identifiable in the same conditions than for the Partial
Credit Model.

4.8. Estimation of the Individual Values of the Latent Trait

To realize a test of fit of the model to the data, the individual values of the
latent trait must be estimated. The NLMIXED SAS procedure allows obtaining the
empirical Bayes estimates of the individuals values of the latent trait �n based on
the maximization of the quantity QBn (7):

QBn =
J∏

j=1

P�Xnj = xnj/�n� �̂1� � � � � �̂J �G��n/�̂
2�

where the �̂j and �̂ are the estimations of the parameters obtained with the
NLMIXED SAS procedure, and G�x/�̂� �̂2� is the distribution function of the
latent trait. They can be obtained by adding OUT=bayestable at the end of the line
RANDOM.

4.9. Technical Aspects

The estimations depend on the method used to approximate the marginal likelihood
and on the algorithm used to maximize this marginal likelihood. By default with
the NLMIXED SAS procedure, the method to approximate the marginal likelihood
is the adaptive Gauss–Hermite quadratures and the algorithm to maximize this
likelihood is the quasi-Newton algorithm. The method to approximate the marginal
likelihood can be define by the method= option and the algorithm to maximize the
marginal likelihood can be define by the technique= option.

5. The SAS Macro-Program “%ANAQOL”

5.1. Possibilities

We present a SAS macro-program, named “%AnaQol”, which allows computing
some indices, drawing some graphical representations, and to model the data by one
about five proposed models. Release 8.1 (or posterior releases) of SAS is necessary.
The presented options and possibilities correspond to the release 4.6 of this macro-
program.
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The SAS Macro-Program % AnaQol 445

Several graphical representations are proposed (with SAS/GRAPH), including
the graphical representation of the BCAC, classical or cumulative traces of the
items, and logistic traces of the items. The CAC, and several associated indices
(correlations between the items and the score or the rest-scores, average correlation,
value of the Cronbach alpha without each item� � � ), can be computed.

The parameters of the five models presented in this article can be estimated.
The fit and the quality of the dichotomous models can be evaluated with tests (for
dichotomous items), indices INFIT and OUTFIT, observed and expected traces, or
Item Characteristics Curves of the items (for dichotomous items).

5.2. Execution of the Macro-Program %AnaQol

The macro-program %AnaQol necessitates a SAS-dataset with one row per
individual and one column by item (classical structure of quality of life files).
The macro-program modifies itself the structure of data. Other variables than the
responses to the items can be saved in the initial dataset. The missing values must
be representing by a point �·�.

The name of the table (with, eventually its library) and the name of the items
must be specified. The OUT= option defines the prefix to used for the output tables
(by default, this prefix is “out”).

Tables 2 and 3 detail all the possible keywords to use with each of the options.
By default, none index, graphical representation or model is computed.

5.3. Outputs

The “%AnaQol” SAS macro-program creates until 11 tables of outputs. These tables
are described in the Table 4, and have as prefix the string defined in the OUT=
option. If none option is indicated, the program creates only the table “_rep” and
“_dege”.

5.4. The Logistic Traces

The logistic traces are obtained for dichotomous item by modeling the probabilities
to positively respond to each item as a function of the score by a logistic model: it is
a modeling of the classical traces by a logistic model. This type of trace is possible
only for dichotomous items. None secant logistic traces suggests a good modeling
by a Rasch model.

5.5. Fit Tests with Dichotomous Models

As soon a dichotomous model is used (Rasch model, OPLM, or Birnbaum model),
a fit test is realized. With the Rasch model, the test which is computed is the Q1 test
proposed by van den Wollenberg (1982). This is a chi-square test which compares
the observed and the expected frequencies of positive and negative responses to each
items, and for each value of the score. When the used model is the OPLM or the
Birnbaum model, this test is replaced by the Wright–Panchapakesan (1969) test.
The only difference between it and the Q1 test is the method used to estimate the
expected frequencies.

For these tests, several scores can be grouped together (with the GROUP =
option) in order to obtain more important frequencies, and to improve the power
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446 Hardouin and Mesbah

Table 2
General options of the SAS macro-program “%AnaQol” (underlined keywords are

considered by default)

Option Keywords Interpretation

DATASET= dataset/_LAST_ Name of the dataset
ITEMS= variables/_NUMERIC_ Name of the used items
OUT= string/OUT Prefix of the outputs tables (with its

optional library)
TRACES= NONE None traces of the items is drawn

CLASSICAL Classical traces of the items
are drawn

CUMULATIVE Cumulative traces of the items are
drawn (no difference
with CLASSICAL for
dichotomous items)

FIT A comparison on the same graph
of empirical and theoretical traces
for each item

B = List of values Weights to give to each item
(weights are indicated in the same
order than in the ITEMS=)

REF= SCORE/RESTSCORE/ The (weighted) score or rest-score
WSCORE/WRESTSCORE is the reference for the traces

[weights can be defined in the
B = option]

DISPLAY= YES/NO Percentages are displayed or not
on the traces

TRACE= YES/NO Displays or not the steps of the
program in the log file

ALPHA= YES/NO CAC and associated indexes is
computed or not

SBSALPHA= YES/NO The BCAC is realized (only if
ALPHA = YES) or not

LOGISTIC= YES/NO The logistic traces of the items are
drawn (only for dichotomous
items) or not

of the tests. This method is adapted as soon a few number of individuals present a
given value of the score.

5.6. Downloading of %AnaQol

The SAS macro-program “%AnaQol” can be downloaded from the web address
http://www.anaqol.org. or from the FreeIRT website at http://www.freeirt.org.
The programs “%Gammasym” (to compute the Q1 statistics) and “%rasch”
(Christensen and Bjorner, 2003) (to estimate the parameters of a Rasch model by
conditional maximum likelihood (CML)) can be required. These two programs can
be downloaded on the FreeIRT website.
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Table 3
Options concerning the estimation of the parameters and the fit of the models with the
SAS macro-program “%AnaQol” (underlined keywords are considered by default)

Option Keywords Interpretation

MODEL= NONE None model is fitted
RASCH The Rasch model is fitted

(dichotomous items)
BIRNBAUM The Birnbaum model is fitted

(dichotomous items)
OPLM The One Parameter Logistic Model is fitted

(dichotomous items)
[The B = option must be defined]

PCM The Partial Credit model is fitted
(polytomous items)

RSM The Rating Scale model is fitted
(polytomous items)

START= dataset Defines a dataset of initial values of the
parameters

NLMIXEDOPT= text Defines the options of the NLMIXED
procedure

DETAILS= YES/NO Displays or not the results of the NLMIXED
procedure

SYNTAX= YES/NO Displays, in the log file, the syntax of the
NLMIXED procedure produced by the
macro-program

GROUP= List of values Groups scores together. The highest score
of each group must be indicated.
By default, each value of the score
represents a distinct group.

INFORMATION= YES/NO The information curve is displayed
(only with the dichotomous model) or not

FITGRAPH= YES/NO Scatterplot of the INFIT and OUTFIT
indices per individual or not
only with dichotomous models

MAP= YES/NO A map of the scores and items diffculties
as a function of the latent trait is
displayed or not

ICC= YES/NO The observed and expected Item
Characteristic curves are displayed or not

6. Two Examples with Real Data

6.1. Dichotomous Items: the Sickness Impact Profile

We analyze the scale “Communication” of the French version of the Sickness
Impact Profile. This scale is composed of nine dichotomous items named ‘c1’ to ‘c9’.
The dataset contains the responses of 483 depressive individuals. The parameters of
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Table 4
Tables produced by the SAS macro-program “%AnaQol”

Name of
the table Condition Description

_rep Always Responses to the items defining in ITEMS=,
the score and the rest-scores

_dege Always Transformed datased as defined in the table 1
_alpha ALPHA = YES CAC and average inter-items correlation
_alindexes ALPHA = YES Several statistics associated to the CAC
_sbsalpha SBSALPHA = YES Values used for the BCAC
_traces TRACE �=NONE Values of the traces
_fit MODEL �=NONE Fit indexes (log-likelihood, AIC� � � )
_parameters MODEL �=NONE Estimations of the parameters [can be used

with the START= option]
_items MODEL �=NONE Estimations of the parameters (and associated

tests)
_tables dichotomous model Observed and expected frequencies for each

group of scores of negative and positive
responses

_latent MODEL �=NONE, Estimated value of the latent trait for each
BIRNBAUM value of the score

the Rasch model can be estimated by using

%AnaQol(dataset=sip,items=c1-c9,model=rasch, group=1 2 3 4 5 6
8,icc=yes);

The individuals with a score of 7 or 8 are grouped together to compute the fit
statistics, because there is only 38 individuals with such these two scores.

Three items (c1, c5, and c7) have a significant bad fit by analyzing of the Q1
statistics. By comparing the observed and the expected Item Characteristic Curves
(ICC) of these three items (Figs. 1a,b,c), and ones of a good fitted item (item 4,
Fig. 1d.), c1 and c5 present a low slope of the trace than expected and c7 a higher
slope.

The estimations of the parameters of the Birnbaum model can be obtained with:

%AnaQol(dataset=sip,items=c1-c9,model=birnbaum);

The obtained results are presented in Appendix 2. The item c5 still presents a
significant bad fit. Compared to the Rasch model, this model has 8 supplementary
parameters. A test of likelihood ratio between the two models allows testing the
equality of the discriminating powers (Rasch model). The statistic of this test is
equal to 4451�0− 4494�3 = 43�3 which is distributed under the null assumption as
a chi-square distribution with 8 degrees of freedom. This test is significant (p <
0�0001), so the assumption of equality of all the discriminating powers is rejected
and the Birnbaum model is prefered.

The analysis of the discriminating powers of the items shows two groups of
items: a first group (composed of the items 2, 3, 4, 7, 8, 9) with high values of
the discriminating powers (between 2�1 and 2�9) and a second group (composed of



D
ow

nl
oa

de
d 

By
: [

H
ar

do
ui

n,
 J

. -
B.

] A
t: 

08
:1

2 
27

 M
ar

ch
 2

00
7 

The SAS Macro-Program % AnaQol 449

the three others items) with poor discriminating powers (between 1�0 and 1�5). We
note that the three missfit items in the Rasch model are, for two of them, items of
the second group, and the item 7 which have the larger discriminating power (2�9
against a maximal value of 2�4 for the others items of the first group).

The parameters of the Birnbaum model can be used to obtain an idea of the
coefficients of the OPLM. We propose to use the coefficients 1, 2, 2, 2, 1, 1, 3, 2, and
2, respectively for the parameters Bj of the items c1 to c9. The results are presented
in Appendix 3.

%AnaQol(dataset=sip,items=c1-c9,model=oplm, B=1 2 2 2 1 1 3 2 2,
group=1 2 3 4 6 7 9 15);

This model has ten parameters (as for the Rasch model). This model allows
obtaining a better fit than with the Rasch model (compared with the log-likelihood).
The test of likelihood ratio between this model and the Birnbaum model allows
testing the assumption that the values of the discriminating powers of the items are
these ones used in the OPLM. The statistics of this test is equal to 4456�4− 4451�0 =
5�4 with 8 degrees of freedom �p = 0�714�, so the null assumption is not rejected
and the OPLM is prefered.

Figure 1. Empirical and theoretical ICC of the items 1, 5, 7, and 4 under the Rasch model.
(a) ICC of the item c1, (b) ICC of the item c5, (c) ICC of the item c7, (d) ICC of the item c4.
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450 Hardouin and Mesbah

Indeed, if the OPLM is the best of these three models, three items continues to
present a bad fit: c1, c7, and c9. The deletion of one or several of these three items
could be considered.

6.2. Polytomous Items: the Diabetes Health Profile

The scale “Disinhibited eating” of the Diabetes Health Profile (DHP) (Mocard et al.,
2004) is composed of five polytomous items numbered ‘dhp32’, ‘dhp34’, ‘dhp36’,
‘dhp38’, and ‘dhp39’, with four possibilities of responses for each one (“never”,
“sometimes”, “often”, “very often” or “not at all”, “a little”, “a lot”, “very much”).
The dataset contains the responses of 214 diabetic individuals. This scale is analyzed
with a Partial Credit model:

%AnaQol(dataset=dhp,items=dhp32 dhp34 dhp36 dhp38 dhp39,
model =pcm);

The results are presented in Appendix 4. The model gives the estimations of
three parameters per item. Since the number of modalities is the same for all
the items, the Rating Scale Model is a particular Partial Credit Model where the
parameters corresponding to the modalities superior to “1” are equal for all the
items. The results obtained with a Rating Scale Model are presented in Appendix 5:

%AnaQol(dataset=dhp,items=dhp32 dhp34 dhp36 dhp38 dhp39,
model =rsm);

The t2 and t3 parameters represent the parameters corresponding to the
modalities 2 and 3. We can realize a test of likelihood ratio between the likelihoods
obtained with the two models. The nul assumption corresponding to this test is
the assumption of equality of the differences between the parameters corresponding
to the modalities superior to 1 and the global difficulty parameter, that is to say:
�j2 − �j1 = �2 ∀j and �j3 − �j1 = �3 ∀j.

The statistics of the test is distributed among a chi-square distribution with 8
degrees of freedom. The values of the statistics is 2358�4− 2217�4 = 141�0. The test
is very significant (p < 0�001), so the Partial Credit Model is prefered.

7. Conclusion

The SAS macro-program “%AnaQol” allows easily estimating the parameters of
five IRT models, computing indices, and drawing graphical representations. This
program needs an improvement of the goodness-of-fit tests, notably for polytomous
data. But general softwares have the advantage to be flexible and the main
drawbacks, the time to estimate parameters in a generalized linear mixed model
(GLLM), will be fastly an outdated problem, regarding the explosion of the speed
of the computer science.

Full of users prefer to keep their traditional softwares to realize their analysis.
The reasons are the habits (these users know in general the syntax of only one
generalist software like SAS—or Splus, R, Stata, SPSS), the cost (in general the
specific softwares are not free), and the easiness (the use of several softwares
necessitate full of data handling). The programming of the usual IRT indexes and
models under the generalist software is so an important way to develop these
kinds of analysis. The FreeIRT Project (http://www.freeirt.org) aims to develop a
database of the existing programs to use IRT with the generalist software.
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Appendixes

Appendix 1. Results with a Rasch Model

Rasch model

Description Valued

−2 Log likelihood 4494.3
AIC (smaller is better) 4514.3

Difficulty Outfit Infit
Items parameters s.e. Q1 d.f. p-value indice indice

C1 −0�63354 0�11129 33�2015 6 0�00001 1�29863 1�08269
C2 1�93631 0�15041 5�0849 6 0�53297 0�69975 0�91513
C3 1�82172 0�14663 5�4959 6 0�48195 0�73938 0�83963
C4 0�49695 0�11666 2�6958 6 0�84594 0�76023 0�88700
C5 −0�21403 0�11157 12�6031 6 0�04979 1�04906 0�98593
C6 0�63876 0�11898 7�2966 6 0�29429 0�94471 0�99829
C7 0�34378 0�11518 13�3082 6 0�03839 0�60554 0�77024
C8 1�37602 0�13310 8�7221 6 0�18982 0�66449 0�84649
C9 −0�71691 0�11157 5�2896 6 0�50724 0�78287 0�85147
GlobalQ1 – – 83�2869 48 0�00119 – –
Variance 2�31820 0�25316 – – – – –

Appendix 2: Results with a Birnbaum Model

Birnbaum model

Description Value

−2 Log likelihood 4451.0
AIC (smaller is better) 4487.0

Dicrimi
Difficulty nation Outfit Infit

Items parameters s.e. power s.e. WP d.f. p-value indice indice

C1 −0�05998 0�10568 1.00000 – 8�9485 7 0�25638 0�91022 0�91390
C2 1�27295 0�23990 2.14630 0�48994 8�2555 7 0�31060 0�65197 0�90811
C3 1�19755 0�22481 2.21414 0�50188 12�5620 7 0�08353 0�66815 0�87698
C4 0�56132 0�11955 2.01858 0�42272 8�2067 7 0�31472 0�67258 0�83765
C5 0�23769 0�09919 1.26985 0�26253 19�7072 7 0�00624 0�85183 0�88119
C6 0�75102 0�16247 1.46996 0�31926 13�7089 7 0�05661 0�79527 0�88482
C7 0�42305 0�09240 2.88214 0�61525 9�6802 7 0�20743 0�49984 0�72468
C8 0�94021 0�17585 2.43984 0�53847 10�8587 7 0�14490 0�56529 0�84488
C9 −0�07496 0�06782 2.15652 0�45293 6�7447 7 0�45594 0�66126 0�75423
GlobalWP – – – – 98�6723 56 0�00038 – –
Variance 0�72456 0�23714 – – – – – – –
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Appendix 3. Results with an OPLM

OPLM

Description Value

−2 Log likelihood 4456.4
AIC (smaller is better) 4476.4

Difficulty Outfit Infit
Items parameters s.e. B WP d.f. p-value indice indice

C1 −0�39366 0�09757 1 24�916 7 0�00079 0�91365 0�91841
C2 1�05697 0�08183 2 7�331 7 0�39522 0�66894 0�91449
C3 0�99256 0�07972 2 4�447 7 0�72713 0�68201 0�89014
C4 0�26421 0�06359 2 10�805 7 0�14736 0�65984 0�84923
C5 −0�04483 0�09803 1 7�630 7 0�36631 0�85768 0�87879
C6 0�67111 0�10496 1 14�225 7 0�04733 0�81224 0�87070
C7 0�11763 0�05187 3 21�121 7 0�00360 0�45457 0�70889
C8 0�74968 0�07252 2 11�144 7 0�13246 0�58405 0�84012
C9 −0�41349 0�06103 2 24�833 7 0�00081 0�65618 0�75309
GlobalWP – – – 126�451 56 0�00000 – –
Variance 0�89570 0�10270 – – – – – –

Appendix 4. Results with a Partial Credit Model

Partial credit model

Description Value

−2 Log likelihood 2217.4
AIC (smaller is better) 2249.4

Parameter Estimate s.e. Parameter Estimate s.e. Parameter Estimate s.e.

betaDHP321 −0�1844 0�1812 betaDHP322 1�4497 0.2456 betaDHP323 1�6175 0�3826
betaDHP341 0�4454 0�2453 betaDHP342 −0�3228 0.2608 betaDHP343 −0�0784 0�2249
betaDHP361 0�1764 0�2230 betaDHP362 −0�3757 0.2199 betaDHP363 1�5265 0�2634
betaDHP381 −0�0676 0�1732 betaDHP382 2�5454 0.3495 betaDHP383 0�6498 0�4526
betaDHP391 −1�5428 0�2176 betaDHP392 1�9043 0.2572 betaDHP393 0�3571 0�3212

Variance 0�7462 0.1513

Appendix 5. Results with a Rating Scale Model

Rating scale model

Description Value

−2 Log likelihood 2358.4
AIC (smaller is better) 2374.4

Parameter Estimate s.e. Parameter Estimate s.e. Parameter Estimate s.e.

betadhp32 0.0173 0.1291 betadhp34 −0�9179 0�1423 betadhp36 −0�5730 0.1353
betadhp38 0.2337 0.1292 betadhp39 −0�5017 0�1337
t2 1.3550 0.1592 t3 1�2053 0�1841 Variance 0�6999 0.1429
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