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Abstract: Early stopping of clinical trials in case of either beneficial or delete-
rious effect of a treatment on quality of life (QoL) is an important issue. QoL
is usually evaluated using self-assessment questionnaires and responses to the
items are usually combined into QoL scores assumed to be normally distributed.
However, these QoL scores are rarely normally distributed and usually do not
satisfy a number of basic measurement properties. An alternative is to use item
response theory (IRT) models such as the Rasch model for binary items which
takes into account the categorical nature of the items. In this framework, the
probability of response of a patient on an item depends upon different kinds
of parameters: the ”ability level” of the person (which reflects his/her current
QoL) and a set of parameters characterizing each items.

Sequential analysis and mixed Rasch models assuming either known or un-
known items parameters values were combined in the context of phase II, phase
III comparative clinical trials. The statistical properties of the Triangular Test
(TT) were compared using mixed Rasch models and the traditional method
based on QoL scores by means of simulations.

The type I error of the TT was correctly maintained for the methods based
on Qol scores and the Rasch model assuming known items parameters values,
but was higher than expected when items parameters were assumed to be un-
known. The power of the TT was satisfactorily maintained when Rasch models
were used but the test was underpowered when the QoL scores method was
used. All methods allowed substantial reductions in average sample numbers
as compared with fixed sample designs, especially the method based on Rasch
models. The use of IRT models in sequential analysis of QoL endpoints seems
to provide a more powerful method to detect therapeutic effects than the tra-
ditional QoL scores method and to allow for reaching a conclusion with fewer
patients.
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1.1 INTRODUCTON

Many clinical trials attempt to measure Health-Related Quality of Life (QoL)
which refers to ”the extent to which one’s usual or expected physical, emotional
and social well-being are affected by a medical condition or its treatment” [Cella
(1995), Fairclough (2002)]. Early stopping of clinical trials either in case of ben-
eficial or deleterious effect of treatment on QoL is an important issue. However,
each domain of health can have several components (e.g., symptoms, ability to
function, disability) and translating these various domains of health into quan-
titative values to measure quality of life is a complex task, drawing from the
field of psychometrics, biostatistics, and clinical decision theory. In clinical tri-
als in which specific therapeutic interventions are being studied, patient’s QoL
is usually evaluated using self-assessment questionnaires which consist of a set
of questions called items (which can be dichotomous or polytomous) which are
frequently combined to give scores. The common practice is to work on average
scores which are generally assumed to be normally distributed. However, these
average scores are rarely normally distributed and usually do not satisfy a num-
ber of basic measurement properties including sufficiency, unidimensionality, or
reliability. An alternative is to use item response theory (IRT) models [Fisher
and Molenaar (1995)], such as the Rasch model for binary items, which takes
into account the categorical nature of the items by introducing an underlying
response model relating those items to a latent parameter interpreted as the
true individual QoL.

Early stopping of a trial can occur either for efficacy, safety or futility rea-
sons. Several early termination procedures have been developed to allow for
repeated statistical analyses on accumulating data and for stopping a trial as
soon as the information is sufficient to conclude. Among the sequential meth-
ods that have been developed over the last few decades [Pocock (1997), O’Brien
and Fleming (1979), Lan and De Mets (1983)], the Sequential Probability Ra-
tio Test (SPRT) and the Triangular Test (TT), which were initially developed
by Wald (1947) and Anderson (1960) and later extended by Whitehead to al-
low for sequential analyses on groups of patients [Whitehead and Jones (1979),
Whitehead and Stratton (1983)] have some of the interesting following features.
They allow for: (i) early stopping under H0 or under H1, (ii) the analysis of
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quantitative, qualitative or censored endpoints, (iii) type I and II errors to be
correctly maintained at their desired planning phase values, (iv) substantial
sample size reductions as compared with the single-stage design (SSD).

While sequential methodology is often used in clinical trials, IRT modelling,
as a tool for scientific measurement, is not quite well established in the clini-
cal trial framework despite a number of advantages offered by IRT to analyze
clinical trial data [Holman, Glas and Haan (2003)]. Moreover, it has been sug-
gested that IRT modelling offers a more accurate measurement of health status
and thus should be more powerful to detect treatment effects [McHorney, Haley
and Ware (1997), Kosinski et al. (2003)]. The benefit of combining sequential
analysis and IRT methodologies using mixed Rasch models for binary items
has already been studied in the context of non-comparative phase II trials and
seems promising [Sébille and Mesbah (2005)]. The joint use of IRT modelling
and sequential analysis is extended to comparative phase II and phase III trials
using the TT. The test statistics (score statistics and Fisher information for
the parameter of interest) used for sequential monitoring of QoL endpoints are
derived and studied through simulations.

1.2 IRT MODELS

Item Response Theory (IRT) or more precisely parametric IRT, which was
first mostly developed in educational testing, takes into account the multiplic-
ity and categorical nature of the items by introducing an underlying response
model [Ficher and Molenaar (1995)] relating those items to a latent parameter
interpreted as the true individual QoL. In this framework, the probability of re-
sponse of a patient on an item depends upon two different kinds of parameters:
the ”ability level” of the person (which reflects his/her current QoL) and a set
of parameters characterizing each item. The basic assumption for IRT models
is the unidimensionality property stating that the responses to the items of a
questionnaire are influenced by one underlying concept (e.g., QoL) often called
latent trait and noted θ. In other words, the person’s ability or the person’s
QoL should be the only variable affecting individual item response. Another
important assumption of IRT models, which is closely related to the former, is
the concept of local independence meaning that items should be conditionally
independent given the latent trait θ. Hence, the joint probability of a response
pattern given the latent trait θ can be written as a product of marginal probabil-
ities. Let Xij be the answer for subject i to item j and let θi be the unobserved
latent variable for subject i (i = 1, ..., N ; j = 1, ..., J):
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P (Xi1 = xi1, ..., XiJ = xiJ/θi) =
J∏
j=1

P (Xij = xij/θi) (1.1)

A last assumption for IRT models is the monotonicity assumption stating
that the item response function P (Xij > k/θi) is a non-decreasing function of
θi, for all j and all k.

1.2.1 The Rasch Model

For binary items, one of the most commonly used IRT model is the Rasch
model, sometimes called the one parameter logistic model [Rasch (1980)]. The
Rasch model specifies the conditional probability of a patient’s response Xij

given the latent variable θi and the item parameters βj :

P (Xij = xij/θi, βj) = f(xij/θi, βj) =
exij(θi−βj)

eθi−βj
(1.2)

where βj is often called the difficulty parameter for item j (j = 1, ..., J). Con-
trasting with other IRT models, in the Rasch model, a patient’s total score,
Si =

∑J
j=1 is a sufficient statistic for a specific latent trait θi.

1.2.2 Estimation of the parameters

Several methods are available for estimating the parameters (the θs and βs) in
the Rasch model [Fisher and Molenaar (1995)] including: joint maximum likeli-
hood (JML), conditional maximum likelihood (CML), and marginal maximum
likelihood (MML). JML is used when person and item parameters are consid-
ered as unknown fixed parameters. However, this method gives asymptotically
biased and inconsistent estimates [Haberman (1977)]. The second method CML
consists in maximizing the conditional likelihood given the total score in order
to obtain the items parameters estimates. The person parameters are then
estimated by maximizing the likelihood using the previous items parameters
estimates. This method has been shown to give consistent and asymptotically
normally distributed estimates of item parameters [Andersen (1970)]. The last
method MML is used when the Rasch model is interpreted as a mixed model
with θ as a random effect having distribution h(θ/ξ) with unknown parameters
ξ. The distribution h(.) is often assumed to belong to some family distribution
(often Gaussian) and its parameters are jointly estimated with the item param-
eters. As with the CML method, the MML estimators for the item parameters
are asymptotically efficient [Thissen (1982)]. Furthermore, since MML does
not presume existence of a sufficient statistic (unlike CML), it is applicable to
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virtually any type of IRT model.

1.3 SEQUENTIAL ANALYSIS

1.3.1 Traditional Sequential Analysis

Let us assume a two-group parallel design with two treatment groups (g = 1
for the control group and g = 2 for the experimental treatment group) and that
the primary endpoint is QoL at the end of the treatment period which is mea-
sured using a QoL questionnaire with J dichotomous items. In the traditional
framework of sequential analysis [Wald (1947), Whitehead (1997), Jennison
and Turnbull (1999)], QoL is assumed to be observed (not to be a latent vari-
able) in each treatment group and the QoL score Sig is used in place of the
true latent trait θig (g = 1, 2) at each sequential analysis. In that setting, the
observed scores in each group (s11, s12,...) and (s21, s22,...) are assumed to
follow some distribution often assumed to be Gaussian with unknown parame-
ters µg (g = 1, 2) and common σS . Suppose we are testing the null hypothesis
H0 : µ1 = µ2 = µ against the one-sided alternative H1 : µ2 > µ1. The fol-
lowing parameterization is often used for the measure of treatment difference
(parameter of interest) φS = µ2−µ1

σS
. The log-likelihood, which can be expressed

according to both independent samples, and its derivatives can be used to de-
rive the test statistics Z(S) and V(S), both evaluated under the null hypothesis.
The test statistic Z(S) is the efficient score for φ depending on the observed
scores S, and the test statistic V(S) is Fisher’s information for φ.

More precisely, the test statistics Z(S) and V(S) are given by:

Z(S) =
n1n2

(n1 + n2)D
(s2 − s1) (1.3)

and

V (S) =
n1n2

(n1 + n2)
− Z2(S)

2(n1 + n2)
(1.4)

in which :

• ng is the cumulated number of patients (since the beginning of the trial)
in group g (g = 1, 2),

• sg =
∑ng

j=1
sgj

ng
where sgj denotes the observed scores of patient j in group

g,
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• D is the maximum likelihood estimate of σS under the null hypothe-

sis : D =
√

Q
n1+n2

−
(

R
n1+n2

)2
with Q =

∑n1
j=1 s

2
1j +

∑n2
j=1 s

2
2j and R =∑n1

j=1 s1j +
∑n2
j=1 s2j .

Details of the computations are described at length by Whitehead (1997).

1.3.2 Sequential Analysis based on Rasch models

We shall now be interested in the latent case, i.e., the case where θig (g = 1, 2)
is unobserved in each treatment group. Let us assume that the latent traits
θ1 and θ2 are random variables that follow normal distributions N(ψ1, σ

2
θ) and

N(ψ2, σ
2
θ), respectively and that we are testing: H0 : ψ1 = ψ2 = ψ against

H1 : ψ1 > ψ2. A reparameterization can be performed so that ϕ = ψ2−ψ1

2
be the parameter of interest and the nuisance parameter be made up of φ =
ψ1+ψ2

2 and η = (σ, β1, ..., βJ) such that ϕ = 0 under H0, ψ1 = φ − ϕ, and
ψ2 = ϕ + φ. Assuming that n1 + n2 = N data have been gathered so far
in the two treatment groups, the log-likelihood of ϕ, φ and η can be written
as l(ϕ, φ, η) = l(1)(ψ1, σθ, β1, ..., βJ) + l(2)(ψ2, σθ, β1, ..., βJ). Assuming a Rasch
model for patient’s items responses, we can write:

l(g)(ψg, σθ, β1, ..., βJ) =
N∑
i=1

log

 1
σθ
√

2π

∫ +∞

−∞
e
− (θ−ψg)2

2σ2
θ

J∏
j=1

exijg(θ−βj )
1 + eθ−βj

dθ

 , g = 1, 2

(1.5)
Let φ∗ and η∗ = (σ∗θ , β

∗
1 , ..., β

∗
J) be the estimates of φ and η = (σθ, β1, ..., βJ)

under the assumption that both series of data are drawn from the same distri-
bution. There is no analytical solution for φ∗ and η∗ and numerical integration
methods have to be used to estimate these parameters. The identifiability con-
straint

∑J
j=1 βj = 0 is used.

The test statistics Z(X) and V(X), which were previously noted as Z(S) and
V(S), will be depending this time directly on X, the responses to the items.
They can be derived in the following way:

Z(X) =
∂l(0, φ∗, σ∗θ , β

∗
1 , ..., β

∗
j )

∂ϕ
=
∂l(2)(φ∗, σ∗θ , β

∗
1 , ..., β

∗
j )

∂ψ2
−
∂l(1)(φ∗, σ∗θ , β

∗
1 , ..., β

∗
j )

∂ψ1
(1.6)

That is, we need to evaluate

N∑
i=1

∂

∂ψg

log

∫ +∞

−∞
hψg ,σθ(θ)

J∏
j=1

f(xijg/θ;βj)dθ

 (1.7)

at (φ∗, σ∗θ , β
∗
1 , ..., β

∗
J) for g = 1, 2 where hψg ,σθ is the density of the normal dis-

tribution.
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The test statistic V(X) can sometimes be approximated under H0 by:

V (X) = −∂
2l(0, φ∗, σ∗θ , β

∗
1 , ..., β

∗
J)

∂ϕ2

= −∂
2l(2)(φ∗, σ∗θ , β

∗
1 , ..., β

∗
J)

∂ψ2
2

− ∂2l(1)(φ∗, σ∗θ , β
∗
1 , ..., β

∗
J)

∂ψ2
1

(1.8)

when the two samples are large, of about the same size and when ϕ is small.

Estimation of the statistics Z(X) and V(X) is done by maximising the
marginal likelihood, obtained from integrating out the random effects. Quasi-
Newton procedures can be used for instance to maximise the likelihood and
adaptive Gaussian quadrature can be used to integrate out the random effects
[Pinheiro and Bates (1995)].

1.3.3 The Triangular Test

For the ease of the general presentation of the sequential test we shall use the
conventional notations Z and V. The TT uses a sequential plan defined by two
perpendicular axes, the horizontal axis corresponds to Fisher’s information V,
and the vertical axis corresponds to the efficient score Z which represents the
benefit as compared with H0. For a one-sided test, the boundaries of the test,
delineate a continuation region (situated between these lines), from the regions
of non rejection of H0 (situated beneath the bottom line) and of rejection of
H0 (situated above the top line). The boundaries depend on the statistical
hypotheses (values of the expected treatment benefit, α, and β) and on the
number of subjects included between two analyses. They can be adapted at
each analysis when this number varies from one analysis to the other, using
the ”Christmas tree” correction [Siegmund (1979)]. The expressions of the
boundaries for a one-sided test are well-known [Sébille and Bellissant (2001)].
At each analysis, the values of the two statistics Z and V are computed and Z
is plotted against V, thus forming a sample path as the trial goes on. The trial
is continued as long as the sample path remains in the continuation region. A
conclusion is reached as soon as the sample path crosses one of the boundaries
of the test: non rejection of H0 if the sample path crosses the lower boundary,
and rejection of H0 if it crosses the upper boundary. This test and other types
of group sequential tests are implemented in the computer program PEST 4
[MPS Research Unit (2000)] that can be used for the planning, monitoring and
analysis of comparative clinical trials.



8 Sébille, Hardouin and Mesbah

1.4 SIMULATIONS

1.4.1 Simulations design

The statistical properties of the TT were evaluated with simulated data. We
studied the type I error (α), the power (1 − β), and the average sample num-
ber (ASN) of patients required to reach a conclusion. A thousand comparative
clinical trials were simulated. The latent trait in the control group θi1 was as-
sumed to follow a normal distribution with mean λ1 and variance σ2 = 1 and
the latent trait in the experimental group θi2 was assumed to follow a normal
distribution with mean λ2 = λ1 + d and same variance. The trial involved the
comparison of the two hypotheses: H0 : d = 0 against H1 : d > 0.

We first assumed that the items under consideration formed part of a cali-
brated item bank, meaning that items parameters were assumed to be known
[Holman et al. (2003)]. We also investigated the more extreme case where all
items parameters are assumed to be totally unknown and have therefore to be
estimated at each sequential analysis. For both cases, the items parameters
were uniformly distributed in the interval [-2, 2] with

∑J
j=1 βj = 0.

The traditional method consisted in using the observed QoL scores, S, given
by the sum of the responses to the items, which were assumed to follow a normal
distribution. The Z(S) and V(S) statistics were computed within the well-known
framework of normally distributed endpoints [20].

We compared the use of Rasch modelling methods with QoL scores meth-
ods. To evaluate the effect of the number of items used for measuring QoL,
we investigated QoL questionnaires with 5 or 10 items. Moreover, different
expected effect sizes (noted ES equal to λ2−λ1

σ = d) ranging from small (0.4) to
large (0.8) were investigated. The sequential analyses were performed every 40
included patients and α = β = 0.05 for all simulations.

The simulations have been perfomed using a C++ program, and the data
have been analysed with the SAS software [Hardouin and Mesbah (2007)].

1.4.2 Results

Table 1.1 shows the type I error and power for the TT for different values of the
effect size and of the number of items using the method based on QoL scores
or the Rasch modelling method assuming either known or unknown items pa-
rameters values. The significance level was usually close to the target value
of 0.05 for the QoL scores method and the Rasch modelling method assum-
ing known items parameters values. However, the significance level was always
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Table 1.1: Type I error and Power for the Triangular Test (TT) using the
method based on QoL scores or the Rasch model for different values of the effect
size and of the number of items (nominal α = β = 0.05, 1000 simulations)

Effect Number Type I error Power
size of QoL scores Rasch model QoL scores Rasch model

items β known β unknown β known β unknown
0.4 5 0.027 0.039 0.058 0.758 0.951 0.926
0.4 10 0.045 0.044 0.082 0.852 0.952 0.926
0.5 5 0.039 0.048 0.077 0.736 0.944 0.908
0.5 10 0.057 0.064 0.088 0.838 0.951 0.931
0.6 5 0.045 0.056 0.072 0.736 0.934 0.907
0.6 10 0.052 0.057 0.083 0.846 0.952 0.934
0.7 5 0.044 0.046 0.076 0.743 0.938 0.912
0.7 10 0.054 0.049 0.079 0.844 0.947 0.932
0.8 5 0.049 0.041 0.069 0.741 0.943 0.924
0.8 10 0.055 0.049 0.080 0.836 0.949 0.941

higher than the target value of 0.05 for the Rasch modelling method assum-
ing unknown items parameters values for all effect sizes and number of items
considered. The TT was quite close to the nominal power of 0.95 when the
Rasch modelling method assuming known items parameters values was used,
and a little lower than expected when unknown items parameters values were
assumed. However, the TT was notably underpowered when the QoL scores
method was used. Indeed, for the QoL scores method, as compared with the
target power value of 0.95, there were decreases in power of approximately 22%
and 11% with 5 and 10 items, respectively. By contrast, for the Rasch modelling
method assuming unknown items parameters values, the decrease in power was
of about only 4% and 2% with 5 and 10 items, respectively.

Table 1.2 shows the ASN of the number of patients required to reach a
conclusion under H0 and H1 for the TT for different values of the effect size
and of the number of items using the method based on QoL scores or the
Rasch modelling method assuming either known or unknown items parameters
values. We also computed for comparison purposes the number of patients
required by the single-stage design (SSD) and the approximate ASN for the TT
computed with PEST 4 when a normally distributed endpoint is assumed when
planning the trial. As expected, the ASNs all decreased as the expected effect
sizes increased whatever the method used. The ASNs under H0 and H1 were
always smaller for all sequential procedures based either on QoL scores or Rasch
modelling methods than the sample size required by the SSD for whatever values
of effect size or number of items considered. The decreases in the ASNs under
H0 and H1 were usually more marked when the Rasch modelling methods were
used, assuming either known or unknown items parameters values, as compared
with the methods based on QoL scores. Indeed, under H0 (H1) as compared
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Table 1.2: Sample size for the Single-Stage Design (SSD) and Average Sam-
ple Number (ASN) required to reach a conclusion under H0 and H1 for the
Triangular Test (TT) using the method based on QoL scores or the Rasch
model for different values of the effect size and of the number of items (nominal
α = β = 0.05, 1000 simulations)

Effect Number SSD TT* QoL scores Rasch model
size of β known β unknown

items H0/H1 H0/H1 H0/H1 H0/H1

0.4 5 271 155 / 155 140 / 178 140 / 148 135 / 145
0.4 10 271 155 / 155 141 / 167 117 / 122 114 / 119
0.5 5 174 103 / 103 104 / 128 102 / 103 102 / 92
0.5 10 174 103 / 103 103 / 121 84 / 85 83 / 84
0.6 5 121 74 / 74 76 / 95 77 / 76 77 / 77
0.6 10 121 74 / 74 76 / 91 62 / 63 64 / 63
0.7 5 89 57 / 57 60 / 72 61 / 60 63 / 60
0.7 10 89 57 / 57 60 / 70 51 / 51 53 / 52
0.8 5 68 46 / 46 50 / 58 51 / 51 52 / 52
0.8 10 68 46 / 46 50 / 56 45 / 45 47 / 45

*: Approximate ASN for the TT for a normally distributed endpoint.

with the SSD, there were decreases of approximately 37% (25%) and 41% (42%
in sample sizes for the QoL scores method and the Rasch modelling methods,
respectively.

1.5 DISCUSSION - CONCLUSION

We evaluated the benefit of combining sequential analysis and IRT method-
ologies in the context of phase II or phase III comparative clinical trials using
QoL endpoints. We studied and compared the statistical properties of a group
sequential method, the TT, using either mixed Rasch models assuming either
known or unknown items parameters values or the traditional method based on
QoL scores. Simulation studies showed that: (i) the type I error a was correctly
maintained for the QoL scores method and the Rasch modelling method assum-
ing known items parameters values but was always higher than expected for the
Rasch modelling method assuming unknown items parameters values, (ii) the
power of the TT was correctly maintained for the Rasch modelling method as-
suming known items parameters values and a little lower than expected when
items parameters were assumed to be unknown, but the TT was particularly
underpowered for the QoL scores method, (iii) as expected using group sequen-
tial analysis, all methods allowed substantial reductions in ASNs as compared
with the SSD, the largest reduction being observed with the Rasch modelling
methods.
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The different results that were obtained using the mixed Rasch models as-
suming either known or unknown items parameters values or the method based
on QoL scores might be partly explained by looking at the distributions of
the test statistics Z(S), V(S), Z(X), and V(X). According to asymptotic dis-
tributional results, we might expect the sequences of test statistics (Z1(S),
Z2(S),..., ZK(S)) and (Z1(X), Z2(X),..., ZK(X)) to be multivariate normal
with: Zk(S) ∼ N(ES ∗ Vk(S), Vk(S)) and Zk(X) ∼ N(ES ∗ Vk(X), Vk(X)), re-
spectively, where ES denotes the effect size, for k = 1, 2, ...,K analyses [Whiete-
head (1997), Jennison and Turnbull (1999)]. Table 1.3 shows the distribution
of the standardized test statistics under H0 and H1 (effect size equal to 0.5)
that were estimated using the method based on QoL scores or the Rasch models
assuming either known or unknown items parameters values. The estimation of
the test statistics were performed at the second sequential analysis correspond-
ing to a sample size of 80 patients. The normality assumption was not rejected
using a Kolmogorov-Smirnov test, whatever the method used. Under H0 or H1,
the null hypothesis of unit standard deviation (SD) was rejected when the es-
timation was performed with the mixed Rasch model assuming unknown items
parameters values, the estimated SD being larger than expected. This feature
might be to some extent responsible of the inflation of the type I error a under
H0 and might also partly explain the bit of under powering of the TT that was
observed under most H1 hypotheses. Under H1, the null hypothesis of 0 mean
was rejected when the estimation was performed with the QoL scores method,
the estimated mean value being lower than expected. This might explain why
the TT was notably underpowered using the QoL scores method.

Another important aspect is also to be noted for the mixed Rasch model
assuming unknown items parameters values. The use of this model corresponds
to a rather extreme case where no information is assumed to be known about
the items parameters. This can be the case if no data have ever been collected
using the corresponding QoL questionnaire, which is rarely the case. Otherwise,
one could use data from another study using that specific QoL questionnaire
to estimate the items parameters and then use these estimates in the Rasch
model, since the items parameters are assumed to be parameters related only
to the questionnaire and are therefore supposed to be invariant from one study
to another (using the same QoL questionnaire). In our simulation study and
in the example using the data from the phase III oncology trial, the items pa-
rameters were estimated at each sequential analysis, that is on 40, 80, 120, ...
patients since the group sequential analyses were performed every 40 patients.
It is very likely that the amount of available data at each sequential analysis
might be quite insufficient to satisfactorily estimate the item difficulty param-
eters, especially when estimating 5 or 10 items with only 40 patients. The
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Table 1.3: Distribution of the standardized test statistics estimated using the
method based on QoL scores or the Rasch model for different values of the
number of items and for an effect size equal to 0.5, assuming that the vector of
items parameters values b is either known or unknown (nominal α = β = 0.05,
1000 simulations)

Number H0 H1

of QoL scores Rasch model QoL scores Rasch model
items β known β unknown β known β unknown

Z’(S) Z’(X) Z’(X) Z’(S) Z’(X) Z’(X)
5 -0.034 -0.005 -0.028 -0.654* -0.009 -0.006

(0.995) (0.972) (1.090)** (1.014) (0.978) (1.086)**
10 -0.037 -0.003 -0.016 -0.423* 0.007 0.029

(0.995) (1.017) (1.143)** (1.009) (0.996) (1.131)**

Z’(S) and Z’(X) are the standardized test statistics for the method based on QoL scores and the Rasch

model, respectively : Z′(S) =
Z(S)−ES.V√

V
and Z′(X) =

Z(X)−ES.V√
V

where ES is the effect size. Data

are means (SD).
∗ : p < 0.001 for testing the mean equal to 0
∗∗ : p < 0.05 for testing the standard deviation equal to 1

simulations were also performed using 80 patients for the first sequential anal-
ysis to estimate the items parameters and 40 more patients at each subsequent
sequential analysis and this resulted in a type I error closer to the target value
of 0.05 and higher power (data not shown). However, it has to be mentioned
that such a feature might not be interesting for larger effect sizes (over 0.6)
because the benefit in terms of ASNs offered by sequential analyses might then
be overwhelmed by the fact that it will not be possible to stop the study before
80 patients have been included.

We obtained conflicting results when using the QoL scores method and the
mixed Rasch model assuming unknown items parameters values on the data
from the phase III oncology trial. As the non-sequential analysis suggested
from the results obtained for the physical functioning scale at the end of the
first cycle of treatment, we might expect not to be under the null hypothesis
of no treatment effect. The lack of power of the TT which was displayed in
the simulations when using the method based on QoL scores might be respon-
sible for not rejecting the null hypothesis and this might reflect that a type
II error has occurred. The Rasch modelling method assuming unknown items
parameters values (with items parameters being estimated at each sequential
analysis) allowed rejection of the null hypothesis but gave estimates of the test
statistic V(X) which seemed to be importantly underestimated. This might be
explained by different aspects: (i) the fit of the Rasch model seemed to be poor
especially for item 5, (ii) the successive estimates of the SD of the latent trait q
at each sequential analysis were large (of about 5) as well as the standard errors
of the estimated items parameters reflecting an important lack of precision in
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the parameters estimates. Despite these difficulties, the method seemed to be
able to reach the most likely correct conclusion (rejection of the null hypothesis).

Other types of investigations on incorporating IRT methodologies in sequen-
tial clinical trials could also be interesting to perform such as: evaluating the
impact on the statistical properties of the sequential tests of the amount of
missing data (often encountered in practice and not investigated in our study)
and missing data mechanisms (missing completely at random, missing at ran-
dom, non ignorable missing data). In addition, other group sequential methods
could also be investigated such as spending functions [Lan and De Mets (1983)],
and Bayesian sequential methods [Grossman et al. (1994)] for instance. Finally,
we only worked on binary items and polytomous items more frequently appear
in health-related QoL questionnaire used in clinical trial practice. Other IRT
models such as the Partial Credit Model or the Rating Scale Model [Fisher and
Molenaar (1995)] would certainly be more appropriate in this context.

Item response theory usually provides more accurate assessment of health
status as compared with QoL scores method [McHorney, Haley and Ware
(1997), Kosinsky et al. (2003)]. The use of IRT methods in the context of se-
quential analysis of QoL endpoints provides a more powerful method to detect
therapeutic effects than the traditional method based on QoL scores. Finally,
there are a number of challenges for medical statisticians using IRT that may be
worth to mention: IRT was originally developed in educational research using
samples of thousands or even ten thousands. Such large sample sizes are very
rarely (almost never) attained in medical research where medical interventions
are often assessed using less than 200 patients. The problem is even more cru-
cial in the sequential analysis framework where the first interim analysis is often
performed on fewer patients. Moreover, IRT and associated estimation proce-
dures are conceptually more difficult than the QoL scores method often used in
medical research. Perhaps one of the biggest challenges for medical statisticians
will be to explain these methods well enough so that clinical researchers will
accept them and use them. As in all clinical research but maybe even more
in this context, there is a real need for good communication and collaboration
between clinicians and statisticians.
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