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Abstract

Background: Patients-Reported Outcomes (PRO) are increasingly used in clinical and epidemiological research.
Two main types of analytical strategies can be found for these data: classical test theory (CTT) based on the
observed scores and models coming from Item Response Theory (IRT). However, whether IRT or CTT would be the
most appropriate method to analyse PRO data remains unknown. The statistical properties of CTT and IRT,
regarding power and corresponding effect sizes, were compared.

Methods: Two-group cross-sectional studies were simulated for the comparison of PRO data using IRT or CTT-
based analysis. For IRT, different scenarios were investigated according to whether items or person parameters
were assumed to be known, to a certain extent for item parameters, from good to poor precision, or unknown
and therefore had to be estimated. The powers obtained with IRT or CTT were compared and parameters having
the strongest impact on them were identified.

Results: When person parameters were assumed to be unknown and items parameters to be either known or not,
the power achieved using IRT or CTT were similar and always lower than the expected power using the well-
known sample size formula for normally distributed endpoints. The number of items had a substantial impact on
power for both methods.

Conclusion: Without any missing data, IRT and CTT seem to provide comparable power. The classical sample size
formula for CTT seems to be adequate under some conditions but is not appropriate for IRT. In IRT, it seems
important to take account of the number of items to obtain an accurate formula.

Background
Many clinical studies attempt to incorporate measure of
important characteristics, such as health related Quality
of Life (QoL), anxiety, depressive symptoms, fatigue,
addictive behaviours using Patient reported outcomes
(PRO), in order to measure endpoints that reflect
patient’s perception of his or her well-being and

satisfaction with therapy. QoL and other perceived
health measures (pain, fatigue, ...) are increasingly used
as important outcomes in clinical trials and medical sur-
veillance and are considered as highly valued endpoints
of medical care [1].
PRO differ from other measurements because such

patient’s characteristics cannot be directly observed and
measured and are usually evaluated using self-assess-
ment questionnaires which consist of a set of questions
often called items whose responses provided by the
patients are frequently combined to give scores. Two
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main types of analytical strategies can be used for such
data: so-called classical test theory (CTT) and models
coming from Item Response Theory (IRT). CTT relies
on the observed scores (possibly weighted sum of
patients items’ responses) that are assumed to provide a
good representation of a “true” score, while IRT relies
on an underlying response model relating the items
responses to a latent parameter, often called latent trait,
interpreted as the true individual QoL, for instance.
Such IRT models also take into account some items
parameters.
Methods coming from modern measurement theory,

such as IRT models, might provide a powerful frame-
work to build and reduce PRO instruments and analyse
such data in an efficient and reliable manner and should
provide valid measures of QoL, anxiety, or pain for
instance [2]. IRT can improve on the classical approach
to PRO assessment with advantages that might some-
times include appropriate management of possible floor
and ceiling effects, comparison of patients across differ-
ent instruments, interval measurements on the latent
trait scale. Indeed, models coming from IRT are more
and more used for the construction, validation and
reduction of questionnaires [3,4], in particular in the fra-
mework of the Patient-Reported Outcomes Measure-
ment Information System (PROMIS) network [5] for
creating item banks. Consequently, many PRO instru-
ments are found to be well adapted to IRT modelling
either because of the way they were developed using
such IRT-based strategies or because of their desired
psychometric properties.
In most of current literature of intervention and

observational studies, the choice of a statistical strategy
for PRO data analysis is more often based on CTT and
occasionally on IRT and seems to be driven to date by
the researchers ’ practice and familiarity with one
approach or another. However, if IRT models best
describe data coming from some PRO instruments,
such as QoL questionnaires, one may wonder whether
they should provide a better and more powerful strat-
egy than CTT to detect clinically meaningful effects. In
the case of the comparison of QoL levels between two
independent groups of patients, power will depend in
particular on the difference in the means of QoL levels
and the standard deviation of one of the groups (or
pooled standard deviation), often combined together
into the concept of effect size (difference in means
over the standard deviation). The required sample size
to detect a pre-specified effect size with type I error
(a) and power (1-b) is often computed during the
planning of studies. The larger the effect size, the lar-
ger the power for a given sample size. In all cases, an
appropriate analytical strategy and an accurate

estimation of the effect size from data is required to
achieve the desired power. Hence, if an IRT model fits
the data coming from some QoL questionnaire well,
the precision of the estimated effect size using this
model might be higher than the one provided using
CTT analysis. However, whether one of these
approaches is more powerful than the other remains
unknown especially for IRT that often incorporates
many parameters that might either be fixed as known
constants or estimated. These issues all have strong
implications for sample size planning as well as for the
analysis of PRO data and were investigated through a
simulation study. The purpose of our work was there-
fore to study the statistical properties of CTT and IRT
by simulations regarding power and corresponding
effect sizes, to compare these methods between them
and to provide some guidelines for sample size deter-
mination for studies evaluating PRO.

Methods
IRT modelling
Some of the commonly used IRT models are the Rasch
model for binary responses [6,7], and the Rating Scale
model or the Partial Credit model for multiple (> 2)
response options [8,9]. We shall mainly consider the
Rasch model, extensions of the results to other IRT
models will also be discussed.
In IRT models and in the Rasch model in particular,

the responses to the items are modelled as a function of
a latent variable representing the so-called ability of a
patient measured by the questionnaire (e.g. QoL, anxi-
ety, fatigue, ...). Usually, the sample of patients is
believed to be representative of a more general popula-
tion, and the latent variable is then considered as a ran-
dom variable often assumed to follow a normal
distribution. In this model, each item is characterized by
one parameter (δj for the jth item), named difficulty
parameter because the higher its values, the lower the
probability of positive (favourable) responses of the
patient to this item regarding the latent trait being
measured.
Three assumptions govern these models: (i) Unidi-

mensionality: one latent trait influences the responses to
all the items, (ii) Local independence: for a given indivi-
dual, the responses to the items are independent, and
(iii) Monotonicity: the probability to have a positive
response to a given item does not decrease with the
latent variable.
Let us consider that N patients have answered a ques-

tionnaire containing J binary items and let Xij be the
random variable representing the response of patient i
to item j with realization xij, and θi be the realization of
the latent trait θ for this patient.
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For each patient, the probability of responding to each
item is:

P X x
i j x ij

i j
ij ij i j  

  
  / ,

exp

exp
 

 

 1

where δj represents the difficulty of item j.
We consider the latent variable θ as a random variable

following a normal distribution with unknown parameters
μ and s2. Using the local independence assumption, the
marginal likelihood can be written down and the person
parameters (parameters of the distribution of the latent
trait) can be jointly estimated with the item parameters by
marginal maximum likelihood estimation (MML) obtained
from integrating out the random effects [6].

Sample size determination in the framework of
normally distributed endpoints
Suppose we plan to conduct a cross-sectional study aim-
ing at comparing two independent groups on an end-
point assumed to be normally distributed with common
variance s2. Under these conditions, the well-known
formula for the comparison of normally distributed end-
points in a two independent group study can be used.
Let the study objective involve the comparison of the

two hypotheses: H0: μ1 = μ2 against H1: μ1 ≠ μ2, where
μ1 and μ2 represent the population means in the first
and second group, respectively. The effect size (ES) can
be computed as ES   


2 1 [10].

The conventional sample size formula for a two-sided
test size at a and a desired power at 1 - b is the follow-
ing, assuming n1 patients in one group and n2 in the
other group:
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th percentage point of the standard normal cumulative
distribution. In practice, s2, μ1 and μ2 are unknown
population parameters and initial estimates based on the
literature or pilot studies are often used for calculations.
For instance, using this formula, about 100 patients (n1
= n2 = N = 105) are required per group to detect an
effect size of 0.5 with 95% power and a 5% type I error
in a two-sided test.

Sample size determination in an IRT framework
Suppose we are willing to plan a similarly designed two-
group cross-sectional study using an IRT model and

that the outcome of interest is, for instance, one of the
aspects of quality of life based on a given dimension of
a questionnaire. Since the latent trait is assumed to fol-
low a normal distribution, we shall make the assumption
that the above-mentioned formula is also well suited for
sample size calculation based on the latent trait
distribution.
In the framework of IRT, let θ be the latent trait

(focused aspect of quality of life) with normal distribu-
tions N(μIRT1, s

2
IRT) and N(μIRT2, s

2
IRT) in the first and

second group, respectively.
Assuming that the study now involves the comparison

of the two hypotheses: H0: μIRT1 = μIRT2 against H1:
μIRT1 ≠ μIRT2, the effect size on the latent trait scale can

be computed as ESIRT
IRT IRT
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same sample size formula at a and b levels, we get:
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We may notice that, as before, s2
IRT, μIRT1 and μIRT2

are unknown population parameters with the additional
particularity that they now characterise an unobserved
latent variable.

Simulation study
A thousand cross-sectional studies were simulated for the
comparison of two groups at a point in time on a PRO
measure containing binary items (0/1). The PRO measure
was assumed to follow a Rasch model. The latent trait
level for the patients in the first group θ1 was assumed to
follow a normal distribution with mean μIRT1 and var-
iance s2

IRT and the latent trait in the second group θ2
was assumed to follow a normal distribution with mean
μIRT2 = μIRT1 + d and same variance. The study involved
the comparison of the two previous hypotheses which
can now be expressed in the following way: H0: d = 0
against H1: d ≠ 0, giving the corresponding effect size:

ESIRT
d
IRT

  . All datasets were simulated under H1

with different effect sizes on the latent trait (ESIRT).
In order to reflect the range of effect sizes, samples sizes,

and number of items often encountered in clinical and epi-
demiological research in a variety of situations, data were
simulated using the following values. Furthermore, to bet-
ter capture the influence of the sample size and of the
number of items on power, larger ranges than usually
encountered in clinical research were investigated for both.

- ESIRT: 0.2 (small), 0.5 (medium) or 0.8 (high)
according to Cohen [10]
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- sample size per group: N = 100, 200, 300, 400, 500
or 800
- number of items: J = 5, 10, 15, 20, 50 or 100
- variances of the latent traits: s2IRT = 1
- difficulty parameters: quantiles of a standardized
normal distribution
- μIRT1 is determined by using

 
IRT

IRTESIRT d1 2 2   / (as a consequence,

μIRT2 = d/2)

In each simulated dataset, the responses to the items
have been generated using a Rasch model, in which a
group effect was incorporated. Since the variance of the
latent trait is fixed to 1, the group effect parameter is
equal to d. Let Gi the random variable representing the
group of the ith individual and gi its realization (coded
as 0 or 1 for the first and second group, respectively)
and let d be the group effect parameter:
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For each simulated dataset, the parameters d and
s2

IRT were estimated using marginal maximum likeli-
hood. The μIRT1 and δj parameters could be considered
either as known or as unknown parameters (and were
estimated in this case). In the former case, for the δjs, a
precision parameter ε was used in the simulations in the
following way:

Let u with u Unifj j   * ~ ( , )  

where Unif represents the uniform distribution, δj*
denotes the known item parameter used in the Rasch
model for data analysis and δj is the parameter used for
simulating the data.
Two possibilities were investigated:

▪ The parameters δj are known with a good preci-
sion and ε = 0.0, hence δj* = δj
▪ The parameters δj are known with a moderate or
poor precision and ε varies from 0.1 to 1 (with
values 0.1, 0.25, 0.5, 0.75, and 1.0)

The possibility to fix μIRT1 and δj might correspond to
three practical kinds of situations:

▪ Situation 1: the μIRT1 and δj parameters are
known and fixed. This might correspond to a rando-

mized clinical trial where the questionnaire has been
validated by an IRT model in exactly the same popu-
lation than the studied population.
▪ Situation 2: only the δj parameters are known and
fixed (μIRT1 is estimated). This might correspond to
a study where the questionnaire has been validated
by an IRT model in a population close to the studied
population: the properties of the questionnaire are
assumed to be similar in both populations; neverthe-
less, we suppose that the studied population can dis-
play a shift on the mean of the latent trait as
compared to the population of validation, and this
shift is estimated.
▪ Situation 3: none of the parameters are known
and fixed (μIRT1 and δj parameters are estimated).
This corresponds to a study where the questionnaire
has already been validated using classical methods
(face validity, reliability, structure validity...), but not
using an IRT model.

The test statistic of group effect used for IRT was d
and its statistical significance was assessed by a Wald
test.
In order to compute the power of CTT and to com-

pare CTT and IRT in terms of power and corresponding
effect sizes, the score for each patient was calculated as
the unweighted sum of his/her responses to the items.
Since the data have been simulated using an IRT model,
the effect size on the latent trait scale (ESIRT) was
known whereas the effect size on the score scale
(ESCTT) had to be calculated from the simulated data. It
was computed using the estimated mean scores in each
group ( ̂1CTT and ̂2CTT ) along with the estimation of

the global standard deviation ̂ CTT . The effect size for

CTT was then estimated as ESCTT
CTT CTT

CTT
 ˆ ˆ

ˆ
 


2 1 . The

comparison of the mean scores between groups was per-
formed using a two-sample t test.
For IRT and CTT approaches, the powers were com-

puted as the proportion of significant group effects
among the 1,000 simulated datasets. The power and
effect sizes obtained using IRT modelling (Rasch model)
or CTT were compared and the major parameters hav-
ing the strongest impact on them were identified. The
datasets were simulated using the -simirt- module of the
Stata 11 package [11] and analysed using the -raschtest-
module [12].

Results
Simulation study
Situation 1 (δj and μIRT1 are known and fixed)
The power achieved by the tests of group effects using
IRT modelling (Rasch model) with fixed μIRT1 and δj
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parameters (j = 1, ..., J) with different levels of precision
for the latter as compared with their simulated values
are given in additional file 1 for different values of the
effect sizes on the latent trait ESIRT, sample sizes per
group N, and number of items J.
The power was of the same order of magnitude (for

J = 5) or even higher (for J > 5) than the expected
power using the well-known formula for normally dis-
tributed endpoints based on the corresponding ESIRT
and sample size per group N. The impact of the preci-
sion of the fixed item difficulty parameters on power
was moderate but noticeable, especially for small N and
J, the power decreasing as ε increased. Indeed, the maxi-
mum decrease in power was observed for ESIRT = 0.2, N
= 100 and J = 5: as compared with an expected power of
0.293, a 6%, 11%, and 16% decrease in power was
noticed with a good, moderate or poor precision of the
item difficulty parameters, respectively. Moreover, this
decrease was significant; the 95% confidence interval of
the power mean did not include the expected value of
0.293 when ε ≠ 0. A strong impact of the number of
items J was also observed on power. It increased with J
and was larger than the expected power as soon as J
was at least equal to 5 items, whatever the precision, the
increase in power being more marked when ESIRT = 0.2
and for small N. Indeed, as compared with the corre-
sponding expected power of 0.293, for an ESIRT = 0.2

and N = 100, a 27% and 72% increase on average in
power was observed when J = 10 and 100 items, respec-
tively. The power was close to its maximum value of
1.000, so only a corresponding 2% increase in power
was observed when N = 800 when J ≥ 10 items. The
power reached its maximum value of 1.000 as soon as
ESIRT was higher than 0.5 and N larger than 200.
Situation 2 (δj known and fixed, μIRT1 is estimated) and
situation 3 (δj and μIRT1 are estimated)
The power achieved by the tests of group effects using
IRT modelling (Rasch model) or CTT approaches are
given in figure 1 for both situations for an ESIRT = 0.5
on the latent trait and N = 100 patients per group, and
in additional file 2 for all investigated effect sizes ESIRT
for different values of sample sizes per group N and
number of items J.
When μIRT1 was estimated, the power was of the same
order of magnitude using either IRT modelling or CTT
for all values of N and J, whether δj were assumed to be
known and fixed or not. Furthermore, the precision
associated with the item difficulty parameters did not
have an impact on power (data not shown). Moreover,
the power using either method was most of the times
much lower than the expected one based on the effect
size on the latent trait, ESIRT, except for large ESIRT, N
and J. For instance, as compared with an expected
power of 0.942, for N = 100 patients per group and

Figure 1 Power achieved by the tests of group effects using IRT or CTT. Description: Evolution of the power achieved by the tests of
group effects using IRT (Rasch model) or CTT (classical test theory) as a function of the number of items of the questionnaire for an effect size
on the latent trait ESIRT = 0.5 and N = 100 patients per group. IRT: item response theory. Situation 2: unknown person parameters and known
item parameters; Situation 3: unknown person and item parameters.
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ESIRT = 0.5, an approximate 26% decrease in power was
observed for IRT and CTT when J = 5. This decrease
reduced to 2% when J = 100. About N = 200 patients
per group was required to reach a power of at least
0.900 when ESIRT = 0.5. As expected, the impact of the
effect size ESIRT and sample size per group N was
observed with a rise in power as they increased. A
strong impact of the number of items J was also
observed, the increase in power being more marked for
small ESIRT and N. Indeed, for an ESIRT = 0.2 when N =
100, an 86% increase in power (from 0.145 to 0.270)
was observed as the number of items rose from J = 5 to
J = 100. A corresponding 23% increase in power (from
0.790 to 0.970) was observed when N = 800. For an
ESIRT = 0.5, the increase in power was either 33% or 1%
for N = 100 or 300, respectively, as J increased from 5
to 100 items. Almost no increase was observed for N ≥
400. For an ESIRT = 0.8, the power rapidly reached its
maximum value of 1.000, only a slight increase in power
(2%) was observed for N = 100 when J rose from 5 to
50 items.
The mean effect size for CTT, computed from the

simulated data (1,000 simulations) as previously
described, is given in additional file 3 for different values
of the ESIRT on the latent trait, sample sizes per group
N and number of items J. The mean effect size on the
score scale was always lower on average than the corre-
sponding effect size on the latent trait scale for all
values of the number of items J or sample size per
group N. It increased with the number of items J for all
N. Indeed, for all values of the ESIRT (0.2 to 0.8), when
J = 5 items or J = 100 items, the mean effect size on the
score scale represented on average 69% or 94% of the
corresponding effect size on the latent trait scale,
respectively. Moreover, in most of the cases, the 95%
confidence intervals of the mean of the effect size of the
score (data not shown) did not include the correspond-
ing expected value on the latent trait scale, except for
ESIRT = 0.2, N < 200 and J = 100.

A practical example using NHP data
We illustrate the results of the simulation study with an
example coming from a pilot study whose data were
used for sample size calculations for the planning of a
future larger study. The main objective of the upcoming
study is to compare the level of pain between two
groups of patients having muscular dystrophies. The
first group concerns patients with Steinert disease, and
the second group concern others muscular dystrophies,
mainly Duchenne’s and Becker’s muscular dystrophies.
The ethics committee of Reims, France granted approval
for the study.
In the preliminary study, patients were recruited from

the university hospital of Reims, 52 patients were

included with Steinert’s disease and 95 patients with
others muscular dystrophies. The Nottingam Health
Profil (NHP) questionnaire was used in order to evalu-
ate the global Quality of Life of the patients and the
main outcome was the score on the pain subscale. The
latter is composed of 8 binary items and the score is cal-
culated as a weighted sum of the items, according to the
NHP manual.
Patients completed the NHP at inclusion in the study.

The mean scores for the pain subscale in each group
were 32.9 (s2 = 27.92) for patients with a Steinert’s dis-
ease and 25.5 (s2 = 26.62) for patients with other dis-
eases (the global variance = 27.32). Consequently, the
effect size on the weighted score was: (32.9-25.5)/27.3 =
0.271. The test of the difference between the mean
scores using a Student’s test was not significant
(p = 0.15).
A mixed Rasch model including a group effect was

fitted on these data. The global fit of the Rasch model
was not rejected by the R1m test (p = 0.329) [13]. The
estimations of the difference between the mean levels of
the latent trait of the two groups of patients was 0.649
and the variance of the latent trait was 1.9832 (non sig-
nificant difference between groups: p = 0.08). Conse-
quently, an estimation of the effect size on the latent
trait was: 0.649/1.983 = 0.327. When computing the
required sample size using these data and the classical
formula with a type I error of 5% and a power of 90%,
287 patients per group are required using the effect size
of the score scale, and 195 patients per group using the
effect size obtained with the Rasch model, on the latent
trait scale.
In order to evaluate the relevance of these sample

sizes, a Rasch model was used to simulate datasets with
287 or 195 patients per group. The Rasch model para-
meters were randomly drawn in the 95% confidence
interval previously estimated on the pilot study data.
This strategy somehow stands between situations 2 and
3 where items parameters are estimated taking into
account previous knowledge provided by the data. A
thousand datasets were generated using these values for
each calculated sample size. For IRT and CTT
approaches, the powers were computed as the propor-
tion of significant group effects among the 1,000 simu-
lated datasets, using a Rasch model including a group
effect for the former and a t-test on the weighted scores
between the two groups, for the latter. The estimated
powers are given in additional file 4 for 195 and 287
patients per group.
In accordance with the simulation study, we observed

that the estimated effect size was smaller on the score
scale than the one estimated using the Rasch model, on
the latent trait scale (0.271 vs 0.327). Moreover, the
required sample size computed using the effect size on
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the latent trait did not allow obtaining the expected
power (78.9% instead of 90%), stressing the fact that the
usual formula might not be well-suited for IRT models.
In addition, the required sample size computed using
the effect size based on the score allowed obtaining the
expected power, whatever the method of analyse of the
data (score or Rasch model). Consequently, for this
study, it seemed to be reasonable to propose to include
287 patients per group in a future trial aiming to evalu-
ate the difference concerning the perception of pain
between patients with a Steinert’s disease and the
patients with another muscular dystrophy.

Discussion
We investigated and compared the power and corre-
sponding effect sizes of two main approaches for the
analysis of PRO data, namely CTT and IRT-based meth-
ods. For the latter, different scenarios were investigated
according to whether items and/or person (mean of the
latent trait) parameters were assumed to be known
(situations 1 and 2), to a certain extent for item para-
meters, from good (as in some randomized clinical trials
for instance) to poor precision, or unknown and there-
fore had to be estimated (situation 3).
When items and person parameters were both

assumed to be known in the Rasch model (situation 1),
the power was either of the same order of magnitude or
even higher than the expected one using the regular
sample size formula as the number of items increased.
The impact of the precision of item parameters values
was modest and mainly perceptible for high values of ε
(ε = 1.0), corresponding to a rather poor precision that
might be rarely encountered in such a context. Indeed,
using known and prespecified person and item para-
meters can be envisaged in randomized clinical trials
aiming at evaluating PRO where IRT-validated instru-
ments are used. This situation corresponds to the most
favourable one regarding power; however it has to be
stressed that assuming both person and items para-
meters to be known implies that the patient population
in the trial is similar to the one used for validating the
instrument, which can be restrictive. Indeed, the fact
that there isn’t any shift on the mean of the latent trait
between the two populations often remains quite
uncertain.
When person parameters were assumed to be

unknown and items parameters to be either known
(situation 2) or not (situation 3), the power achieved by
the tests of group effects using IRT modelling (Rasch
model) or CTT were similar in all situations and always
lower than the expected power using the well-known
sample size formula for normally distributed endpoints
based on ESIRT (except for large ESIRT, N and J). More-
over, the number of items J had a substantial impact on

power for both methods, the power increasing quite
importantly with J. In light of the observed results, smal-
ler power than anticipated for both methods can possi-
bly be explained as coming from two different
phenomena according to the chosen approach. For
CTT, we also observed that the effect sizes on the score
and on the latent trait scales were different and always
lower for the score based on CTT. We can recall that
sample size calculation was only based on ESIRT and not
on ESCTT (which was calculated from the simulated
data). Since ESCTT was in fact lower than ESIRT, the
sample size required for CTT to detect a smaller effect
size than expected had to be larger than the one calcu-
lated for IRT based on ESIRT. Hence, the power for
CTT was consequently lower than the expected one for
IRT.
For IRT, the loss in power might be related mostly to

the precision of the latent trait mean estimation. In fact,
whether item parameters were assumed to be known
exactly (good precision, ε = 0.0) or not had no impact
on power, which was similar in all situations, including
CTT. In all cases, marginal maximum likelihood estima-
tion provided, as expected, unbiased estimates of the
mean of the latent trait (μIRT1) and of item parameters,
when needed. However, the impact on power of the
uncertainty of the estimation of μIRT1, reflecting inter-
individual variability, underlines the importance of tak-
ing it into account in the model. The number of items
also had a strong impact on power that was observed
throughout all of our results whatever the method used
(CTT or IRT with known or unknown item parameters).
In CTT, this number seems to be indirectly taken into
account when calculating the effect size (the value of
the effect size getting bigger as the number of items
increases). Consequently, the expected power in CTT is
correctly computed with the traditional formula using
the effect size on the score scale. This result was
expected because the score is an observed variable, even
if the traditional formula requires some specific condi-
tions to be valid as normality of the score which was
actually artificially created in our study by letting the
difficulty parameters of the items to be regularly spaced.
In IRT, the important effect of the number of items

has strong implications, notably for study design and
sample size calculation. Indeed, it seems that the num-
ber of subjects required for detecting a given effect size
on the latent trait scale with some specified power can
be greatly modified according to the number of items
considered. For instance, for an ESIRT of 0.2, if one
wishes to achieve a power of about 80% using IRT with
unknown person parameters (situations 2 and 3), 800
patients are needed in each group if the number of
items J = 5, an equivalent power size can be obtained
with only 500 patients per group if J = 20 items. Similar

Sébille et al. BMC Medical Research Methodology 2010, 10:24
http://www.biomedcentral.com/1471-2288/10/24

Page 7 of 10



results of the J effect are obtained when using the
Rasch model with fixed person and items parameters
(situation 1) with much fewer patients required to detect
the same ESIRT with equivalent power: about 400
patients are required for J = 5 items and only about 300
patients if J ranges between 10 and 15 items. Such an
effect of J on power and on sample size requirements
should clearly be taken into account in the sample size
formula for PRO which is not the case at this time. The
latter should indeed incorporate some parameters
related to the number of items of the dimension one is
willing to study.
Some guidelines for sample size determination for

two-group cross-sectional comparisons of PRO have
been suggested in the framework of CTT [14] and a
simulation study has provided some insights for sample
size planning using IRT [15]. In the CTT framework,
several sample size formulas have been proposed assum-
ing either normally distributed continuous data, contin-
uous data using non-parametric methods, ordinal data
[16], or bootstrap sample size estimation. Even though
all of these methods do not take into account the num-
ber of items used to assess the patients explicitly, we
can hypothesise that it is indirectly taken into account
through the influence on the difference between the
mean scores of the two groups and the value of the var-
iance of the score (with an increase for both as the
number of items does). Since the score is observed and
does not necessitate a model for its estimation, it can be
considered as a usual variable which can be directly
measured (biological markers, temperature, blood pres-
sure....) and the formula used to determine the sample
size can still be the usual formula under some condi-
tions [14] such as normality, proportional odds, ....
In the IRT framework, the difference between the

means of the latent trait in the two groups as well as
the variance is not influenced by the number of items
(even if the precision of these estimations are better
with a larger number of items). Nevertheless the power
seems to be improved with large questionnaire. Conse-
quently, the usual formula to determine the sample size
seems to be inadequate, because it does not take into
account the number of items, but only the means and
the variance of the latent trait (whose values do not
depend on the number of items). This inadequacy can
be explained by the latent nature of the latent trait; it is
not an observed variable and its estimation requires the
use of a model which creates uncertainty on a large
number of parameters (parameters of the distribution of
the latent trait and possibly items parameters).
The work of Holman et al. [15] extended recently by

Glas et al. [17] have already stressed the impact of the
size of the studied questionnaire on power and hence,
sample size requirements, but the expected power based

on the mean difference of the latent traits was not com-
puted. Furthermore, they have also recalled that large
sample sizes (> 1000) are usually required to estimate
the items parameters of an IRT model with adequate
precision which is much more often encountered in
educational surveys than in clinical or epidemiological
research. However, they have noted as we did in our
study that small and moderate effect sizes can be
detected with reasonable power even with small sample
sizes provided that the uncertainty of the latent variable
is taken into account. Holding items parameters fixed
does not enhance power, except when person para-
meters are also assumed to be known, which might be
too restrictive as already discussed. However, fixing
items parameters to known values coming from pre-
vious validation studies that integrated IRT models
might be interesting because it allows the comparison of
patients coming from different studies that made use of
the same instrument. Furthermore, such items para-
meters do not constitute the main interest in clinical
studies which are more concerned with latent trait level
estimation and corresponding effect sizes. Hence, this
raises the question of the way of handling these para-
meters, should they be considered as nuisance para-
meters, should they be fixed at some plausible values
coming from published items banks in the literature?
More studies are needed to answer these important
questions that have strong implications for sample size
planning and statistical analysis of PRO.
Several limitations of our study and further necessary

developments can be underlined. Our work focused on
one of the most well-known IRT model, the Rasch model,
other models well suited for the analysis of polytomous
item responses [6] such as the Partial Credit Model or the
Rating Scale Model should also be studied. Indeed, the
number of modalities per item as well as the number of
items could also have an important impact on power.
Another field of investigation that has not been covered by
our study is the impact of a non symmetrical score.
Indeed, in the present study, data were simulated by
adjusting the difficulty of the items on the mean value of
the latent trait (the mean difficulty parameters was equal
to the mean of the simulated latent trait). More, the items
parameters were fixed regularly following the standardized
normal distribution. Consequently, the obtained score had
a distribution close to a normal, which constitutes an opti-
mal condition to use the CTT approach that not always
reflects practical situations. Simulation of data leading to a
non-normal score could be performed and allow
determining the robustness of the CTT approach to the
violation of the normality assumption.
Moreover, in a statistical analysis perspective, the

impact on power of missing values possibly non ignor-
able is also an interesting and necessary extension,
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because such incomplete data are often encountered in
PRO studies. Since the Rasch model allows estimating
the parameters by using all the available information
based on the likelihood, we might expect a better per-
formance of IRT as compared to CTT in this frame-
work. Indeed, the score cannot be computed for
individuals with one or more missing value, unless using
missing value imputation. The impact of the number of
missing values, their potential informativity and of the
imputation method is an important topic for future
research.
Furthermore, other study designs and in particular

longitudinal data settings should be part of further
investigations in this domain since PRO data are often
gathered in this way in order to investigate time, group
effect as well as possible interactions between them or
other covariates. Last, in the framework of PRO data,
adaptive and sequential designs eventually incorporating
samples size re-estimation [18] might also offer a valu-
able tool by using accumulating data to decide how to
modify some aspects of a study as it continues without
undermining its validity and integrity. Whether IRT or
CTT-based approaches would offer the best alternative
in this context is not known at this time.

Conclusions
The following advice can be proposed for sample size
and analysis issues for PRO data: i) one should avoid
using prespecified and fixed person parameters since
patients included in the study of interest and in the vali-
dation study are very likely to differ from one another,
even slightly, and this may lead to a substantial loss in
power, ii) using prespecified and fixed items parameters
coming from IRT-based validated instrument might be
valuable, even if it does not improve power, because it
takes benefit from one of IRT’s strength, that is letting
the possibility to compare patients from different studies
that have used an instrument with similar psychometric
properties, iii) one can, under some conditions, use the
classical sample size formula for CTT (since the score
can be considered as an observed variable) and validate
this sample size estimation with IRT using simulations
as was done for the NHP data.
However, applying this formula directly in an IRT fra-

mework is not appropriate since the latent variable is an
unobserved variable whose estimation requires a model
which creates uncertainty. Moreover, in the IRT
approach, more research is needed and preliminary
work (Hardouin J-B, Amri S, Sébille V. Towards sample
size calculations for item response theory analysis for
the comparison of two groups of patients, submitted)
also confirms that it seems important to take account of
the number of items (and of their difficulty) to obtain
an accurate formula.

Additional file 1: Power achieved by the tests of group effects
using IRT with fixed person and item difficulty parameters. Power
achieved by the tests of group effects using IRT with fixed person (mean
of the latent trait in one group, μIRT1) and item difficulty parameters
(good precision: ε = 0.0/moderate precision: ε = 0.5/poor precision: ε =
1.0) as compared with their simulated values for different values of the
effect size on the latent trait scale (ESIRT), the sample size per group N
and the number of items J of the questionnaire.

Additional file 2: Power achieved by the tests of group effects
using IRT or CTT. Power achieved by the tests of group effects using
IRT (Rasch model) or CTT in three situations: IRTa (fixed item parameters
δj with a good precision (ε = 0.0) and person parameter μIRT1 is
estimated)/IRTb (item parameters δj and person parameter μIRT1 are
estimated)/CTT for different values of the effect size on the latent trait
scale (ESIRT), the sample size per group N and the number of items J of
the questionnaire.

Additional file 3: Effect size on the score scale (CTT). Effect size on
the score scale (CTT) for different values of the effect size on the latent
trait scale (ESIRT), the sample size per group N and the number of items J
of the questionnaire.

Additional file 4: Estimated power achieved by the tests of group
effects using IRT (Rasch model) or CTT. Estimated power (1,000
simulations) achieved by the tests of group effects using IRT (Rasch
model) or CTT for two different sample sizes per group.
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