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Towards power and sample size
calculations for the comparison of two
groups of patients with item response
theory models
Jean-Benoit Hardouin,a*† Sarah Amri,a,b Mohand-Larbi Feddaga

and Véronique Sébillea

Evaluation of patient-reported outcomes (PRO) is increasingly performed in health sciences. PRO differs from
other measurements because such patient characteristics cannot be directly observed. Item response theory
(IRT) is an attractive way for PRO analysis. However, in the framework of IRT, sample size justification is
rarely provided or ignores the fact that PRO measures are latent variables with the use of formulas developed
for observed variables. It might therefore be inappropriate and might provide inadequately sized studies. The
objective was to develop valid sample size methodology for the comparison of PRO in two groups of patients
using IRT. The proposed approach takes into account questionnaire’s items parameters, the difference of the
latent variables means, and its variance whose derivation is approximated using Cramer–Rao bound (CRB). We
also computed the associated power. We realized a simulation study taking into account sample size, number
of items, and value of the group effect. We compared power obtained from CRB with the one obtained from
simulations (SIM) and with the power based on observed variables (OBS). For a given sample size, powers using
CRB and SIM were similar and always lower than OBS. We observed a strong impact of the number of items
for CRB and SIM, the power increasing with the questionnaire’s length but not for OBS. In the context of latent
variables, it seems important to use an adapted sample size formula because the formula developed for observed
variables seems to be inadequate and leads to an underestimated study size. Copyright © 2011 John Wiley &
Sons, Ltd.
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1. Introduction

The evaluation of perceived health measures or more generally ‘patient-reported outcomes’ (PRO) is
increasingly performed in clinical and epidemiological research, especially in chronic conditions. These
measures often include health-related quality of life (QoL), depression, or pain outcomes for instance.
PRO differs from other measurements because such patient characteristics cannot be directly observed
and measured and are usually evaluated using self-assessment questionnaires, which consist of a set of
items whose responses provided by the patients are combined to give scores. Two main types of analytic
strategies are used for such data: the so-called classical test theory (CTT) and models coming from item
response theory (IRT). CTT relies on the observed scores (possibly weighted sum of patients’ items
responses) that are assumed to provide a good representation of a ‘true’ score, whereas IRT relies on an
underlying response model relating the items responses to a latent parameter, often called latent trait, and
usually assumed to follow a gaussian distribution, interpreted as the true individual QoL, for instance.

Despite the widespread use of PRO in clinical research, the design and planning of the corresponding
studies are often faced with some important methodological issues, such as the statistical calculation of
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sample size. As a matter of fact, the justification of study size remains hardly ever provided in the frame-
work of self-reported perceived health measures. Furthermore, it has been stressed that many studies
might not be adequately powered to determine clinically important changes in QoL or more generally
symptom control [1, 2]. Specific sample size methodology is importantly needed for clinical research
including PRO to avoid inadequately sized studies that may lead to erroneous and uninformative conclu-
sions and may expose patients to inappropriate medical strategies. One of the main issues in study design
including PRO arises from the type of endpoint being measured and from its major attribute: the fact that
it is an unobserved latent variable and that it should be managed and analyzed as such with appropriate
modeling strategies, particularly when designing a study as soon as planning phase, for reliable sample
size calculations and further analyses. Indeed, to date, most sample size calculations, if any, come from
CTT that often assumes the normality of scores, which is rarely encountered in practice and may lead to
inadequately sized studies. Some authors have also suggested the use of nonparametric methods [3, 4]
that also rely on some assumptions and are seldom used in practice.

Methods coming from modern measurement theory, such as IRT models, might provide a powerful
framework to build and reduce PRO instruments and analyze such data in a more efficient and reliable
manner and should provide valid measures of QoL, anxiety, or pain for instance [5]. Indeed, models com-
ing from IRT are more and more used for the construction, validation and reduction of questionnaires
[6, 7], and for creating item banks [8]. Hence, a lot of PRO instruments are found to be well adapted to
IRT modeling either because of the way they were developed using such IRT-based strategies (for exam-
ple, [9]) or because of their desired psychometric properties (for example, [10, 11]). Moreover, IRT is
sometimes used to obtain short version of the questionnaires (for example, [12]), notably with the use of
computerized adaptive testing [13–16], and is sometimes presented as a solution to have an appropriate
management of possible floor and ceiling effects. IRT also allows for the comparison of scores between
different instruments and obtaining interval measure for the latent trait [17]. It will be appropriate to
compare IRT score means, for instance by contrast, with CTT that only produces an ordinal measure of
the latent trait.

Furthermore, good methodological standards recommend that methods used for sample size planning
and for statistical analysis should be based on similar grounds. Hence, if IRT models best describe data
coming from PRO instruments, they should be taken into account right away during the planning of the
study and sample size calculations. However, in the framework of IRT modeling, sample size determina-
tion is often either not performed at all or relies on CTT and on expected mean scores, thus ignoring the
fact that these specific measures are in fact latent variables [5]. Only very recent developments concern
the question of sample size or power in IRT [18], particularly for the validation of a questionnaire by an
IRT model [19].

An alternative method could be to directly apply the classical sample size formula developed for
normally distributed endpoints [20] on the latent variable measured by an IRT model. This approach
could be attractive, particularly when the latent trait is assumed to be a random variable following a
Gaussian distribution. However, because the usual formula relies on the so-called manifest variables,
that is, observable variable that can be measured directly, and not on latent variables, it might be inade-
quate. Indeed, previous work [18] has shown that using this formula for latent variables is not correct as
it leads to underestimation of the required sample size, and that adapted sample size calculations have to
be developed in the context of latent variables and IRT modeling.

The main objective of this study is to provide valid sample size methodology in the framework of the
comparison of PRO in two groups of patients in cross-sectional studies using IRT modeling strategies.
More specifically, we have focused on the Rasch model as a special case of an IRT model to illustrate
the proposed approach. In this context, we develop and validate a theoretical methodological approach
using simulation studies. We compare the required sample size computed with this approach, adapted to
the context of the Rasch model, with the required sample size provided by the classical formula used in
the context of manifest variables.

2. Methods

2.1. Item response theory models

Some of the commonly used IRT models, particularly in health sciences, are the Rasch model for binary
responses [21, 22] and the rating scale model or the partial credit model for multiple (>2) response
options [23, 24]. We will consider the Rasch model and discuss extensions of the results to other IRT
models. IRT is based on three assumptions, which are often desirable notably during the construction
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and validation steps of PRO instruments: (i) unidimensionality stating that one latent trait influences the
responses to all the items; (ii) local independence meaning that for a given individual, the responses to
the items are independent; and (iii) monotonicity stating that the probability to have a positive response
to a given item does not decrease with the latent variable. The Rasch model can be implemented as a
random effects model to reflect the fact that the sample of patients is assumed to be representative of a
more general population. Hence, the latent variable of interest (‚) is considered as a random variable.

Assume that N patients have answered a questionnaire containing J dichotomous items. Let Xnj be
the random variable representing the response of patient n to item j with realization xnj and �n the
realization of the latent trait for this patient. For each patient (nD 1; :::; N ), the response probability of
the j th item is

P.Xnj D xnj j�n; ıj /D
exp

˚
xnj .�n � ıj /

�
1C exp.�n � ıj /

(1)

where ıj represents the difficulty of item j .
The variables �1, �2, ... �N are mutually independent with a common underlying distribution, which

is often assumed to be Gaussian.

2.2. Estimation of the parameters

With the use of the local independence assumption, the marginal likelihood can be written down and the
parameters of the latent trait can be jointly estimated with the item parameters by marginal maximum
likelihood (MML) estimation obtained from integrating out the random effects [21].

L.�2; ı1; :::; ıJ jx/D

NY
nD1

Z JY
jD1

exp
˚
xnj .� � ıj /

�
1C exp.� � ıj /

G.� j�2/d� (2)

where G.:j�2/ is the Gaussian distribution function with mean � D 0 and variance �2. The constraint
� D 0 is an identifiability constraint, allowing the estimation of the other parameters conditionally
on it [21].

Quasi-Newton algorithm is often used to maximize the likelihood along with adaptive Gauss–
Hermite quadrature to integrate out the random effects [25]. The MML estimators that are obtained
are asymptotically efficient [21, 26].

2.3. Sample size calculations for item response theory analysis

Suppose we plan to conduct a cross-sectional study for the comparison of two groups of patients. Let
N0 and N1 be the expected sample sizes in each group and N DN0CN1. Let ‚ be the latent trait with
normal distributions N.�N1

N
�; �2/ and N.N0

N
�; �2/ in the first (coded 0) and second (coded 1) groups,

respectively. With this parametrization, � > 0 represents the difference between the mean values of the
latent traits in the two groups. The global mean value of the latent trait among all theN patients is 0 (cor-
responding to the identifiability constraint, the global mean being the average of the mean of each group

weighted by the size of the corresponding group : � D 1
N0CN1

�
N0 �

�N1
N
� CN1 �

N0
N
�
�
D 0), and

�2 is the variance of the latent trait (considered to be equal in the two groups). This choice allows con-
sidering the same values of the difficulty parameters as the ones estimated during validation step, where
these parameters are estimated on the whole validation sample. We shall assume that the study involves
the comparison of the two hypotheses: H0 W � D 0 against H1 W � 6D 0. Sample size determination is
closely related to the Wald test of group effect based on an estimate � of � and on its standard error.
The determination of the latter should encompass parameters related to the items of the PRO instrument,
reflecting its psychometric properties, as well as the uncertainty related to the estimation of the latent
trait according to the IRT model. The derivation of an analytical formula for the standard error of � can
use Fisher’s information obtained using the second derivative of the marginal likelihood and Cramer–
Rao’s boundary property, providing a lower boundary for the variance. Here, we shall assume that �
is an unbiased estimator of � , normally distributed with mean � and variance var.�/. Because we are
planning a study, we shall make some assumptions and let item parameters and the variance �2 of the
latent trait be set to some predetermined values (they will be set to fixed values in the simulation study).

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1277–1290
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2.4. Fisher’s information and the Cramer–Rao bound

Let ˆ be an unknown parameter that can be estimated from data x, distributed according to some prob-
ability density function f.xI�/. It can be shown that the variance of any unbiased estimator O� of � is
bounded by the inverse of Fisher’s information I.�/: var. O�/ > 1=I.�/. This is known as the Cramer–
Rao inequality, and the number 1=I.�/ is known as the Cramer–Rao lower bound. Fisher’s information
is defined by the following:

I.�/D�E

�
@2l.�jx/

@�2

�
(3)

where l.xI�/ is the natural logarithm of the likelihood function.

2.5. Calculation of Fisher’s information for the Rasch model

Because the latent traits follow normal distributions N.�N1
N
�; �2/ and N.N0

N
�; �2/ in the first

(coded 0) and second (coded 1) groups with expected sample sizes N0 and N1, respectively, we can
write the marginal maximum likelihood as follows:

L.�2; ı1; :::; ıJ ; � jx/D

1Y
gD0

NgY
nD1

Z JY
jD1

exp.xnj .� C .�1/1�gN1�g�=N � ıj //

1C exp.� C .�1/1�gN1�g�=N � ıj /
G.� j�2/d� (4)

where .�1/1�gN1�g�=N is a simplified expression of the mean for the latent trait in the gth group
(g D 0; 1).

During the planning of the study, we assume the values of the parameters to be fixed to some hypoth-
esized values, so we will consider that the parameters ı1; :::; ıJ and �2 are known. We can then write
the log-likelihood defined in Equation (4) as follows:

l D l.� jx; �2; ı1; :::; ıJ /D log
1Y

gD0

NgY
nD1

Z JY
jD1

exp.xnj .� C .�1/1�gN1�g�=N � ıj //

1C exp.� C .�1/1�gN1�g�=N � ıj /
G.� j�2/d�

(5)
We propose to use the Cramer–Rao lower bound and Equation (3) in order to provide an approximation

of the estimate of the variance of � :

Ovar.�/��

�
E

�
@2l

@�2

���1
(6)

The analytic development of this quantity is defined in Appendix A.
Most of the necessary elements for the calculation of the second derivative of the log-likelihood (thus

Fisher’s information) are now obtained except one unknown parameter, the binary expected patient’s
responses, xnj (nD 1; :::; N and j D 1; :::; J ). During the planning of the study, the patient’s responses
always are unknown. As a consequence, we determine a set of expected responses, conditionally on all
the other parameters fixed to their expected values: number of patients in each group (N0 and N1), num-
ber of items (J ), group effect (�), variance of the latent trait (�2), and difficulty parameters of the items
(ıj ; j D 1:::J ).

First, we determine all the 2J possible binary response pattern x.p/ D .x
.p/
1 :::x

.p/
j :::x

.p/
J /; 8p D

1:::2J ; j D 1:::J; x
.p/
j D 0; 1, and for each of them, we compute two probabilities �p0 (for the pth

pattern in group 0) and �p1 (for the pth pattern in group 1) using the marginal probability to observe the

corresponding responses x.p/j ; j D 1:::j (Equation (1)) and the local independence assumption:

�pg D

Z JY
jD1

exp
�
x
.p/
j

�
� � ıj

��
1C exp

�
� � ıj

� G.� j�g D .�1/
1�gN1�g�=N; �

2/d� (7)

We evaluate these probabilities using Gauss–Hermite quadratures.
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We then determine the expected frequencies npg of each pattern p in each group g in the following
ways:

� We realize a first evaluation of npg using n�pg D floor.Ng � �pg/ with floor.x/ the integer n such
that n6 x < nC 1.

� We compute the numbers of unaffected frequencies N �g DNg �
P
p n
�
pg (g D 0; 1).

� We compute the residual probabilities ��pg D �pg � n
�
pg=Ng .

� We distribute the unaffected frequencies among all the N �g patterns having the greatest values of
the residual probabilities ��pg (for each of them, the final frequency is npg D n�pg C 1, and for the
others patterns, we use npg D n�pg ).

The association between each response pattern and its corresponding frequency allows obtaining an
expected dataset that can be used to determine the Cramer–Rao bound (CRB).

2.6. Estimation of the power of the test

We can test the group effect using a Wald test. The null hypothesis is H0 W � D 0 against the alter-
native hypothesis H1 W � 6D 0. The statistic of this test is �p

var.�/
� N.0; 1/ under H0. We reject the

null hypothesis at level ˛ if j O� jp
Ovar. O�/

> ´1�˛=2 with ´1�˛=2 being the quantiles of the standard normal

distribution.
We can evaluate the expected power 1� ǑCR based on the CRB associated to this test in the following

way:

1� ǑCR D 1�ˆ

 
´1�˛=2 �

O�p
Ovar. O�/

!
Cˆ

 
�´1�˛=2 �

O�p
Ovar. O�/

!
(8)

under the alternative hypothesis, with ˆ being the cumulative standard normal distribution function.
Because � is estimated by MML, its estimate is unbiased and O� was set to � in Equation (8). We evaluate
Ovar. O�/ using the CRB.

If we assume that the groups have been coded such that the � parameter will take a positive value,
then the second term of the Equation (8) is negligible and so

1� ǑCR � 1�ˆ

 
´1�˛=2 �

�p
Ovar.�/

!
(9)

This approximation is in accordance with the traditional way to predict the power or to compute a
required sample size.

2.7. Simulation study

We realize a simulation study to validate the obtained formula for the variance of the group effect and to
estimate the power of the test. We simulate data using a Rasch model in two groups, where we drew the
latent trait from a Gaussian distribution with mean�N1�=N andN0�=N in groups 0 and 1, respectively,
and variance equal to 1.

The parameters of this simulation study are the following:

� The number of individuals per group (N0 DN1): 50, 100, 200, 300, and 500
� The number of items (J ): 5 and 10
� The difficulty parameters of the items: .�1;�0:5; 0; 0:5; 1/ for J D 5 and .�2, �1:5, �1, �0:5, 0,

0, 0.5, 1, 1.5, 2) for J D 10
� The group effect (�): 0, 0.2, 0.5, and 0.8

This constituted 40 scenarios, and we replicate each of them 1000 times. These scenarios reflect
the range of sample sizes and the number of items often encountered in clinical and epidemiological
research.

In each replication, the group effect has been estimated by a Rasch model including a group effect,
with difficulty parameters and variance of the latent trait assumed to be known and fixed to the expected
planning values.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1277–1290
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We performed a Wald test of the group effect. An estimate of the type I error obtained by simulation
corresponded to the rate of rejection of the null hypothesis at ˛ D 5% when � D 0. An estimate of the
power obtained by simulation (1 � ǑS ) corresponded to the rate of rejection of the null hypothesis at
˛ D 5% when � ¤ 0.

For each scenario, the expected power (1 � ǑC ) can also be obtained using the classical formula for
manifest variables [20, p. 46, equation 3.6]

1� ǑC Dˆ

0
@
s

rN0 � O�2

.r C 1/� O�2
� ´1�˛=2

1
A (10)

with r DN1=N0 fixed to 1 in the simulations. The values of O� and O�2 are fixed to their expected planning
values � and �2, respectively.

In addition, the required sample size computed with the classical formula [20, p. 46, equation 3.4] in
order to obtain a power equal to 1� ǑCR to detect the group effect � has been computed as follows:

N0C D
.r C 1/� O�2 �

�
´1�˛=2C ´1� ǑCR

�2
r O�2

(11)

with

N1C D rN0C

and where the values of O� and O�2 are fixed to their expected planning values � and �2, respectively.
In this case, the classical approach is used without distinction of the manifest or latent characteristic

of the studied variables.

2.8. Analysis and validation of the results

We computed and compared the variance of the group effect (varCR) obtained from the CRB with the
mean variance of the estimations of the group effect obtained in the simulation study (varS ) computed
as

1

1000

1000X
lD1

s:e:2. O�l/ (12)

where O�l is the estimate of the � parameter obtained in the l th replication of each case of the simulation
study.

We compare the power defined by Equation (9) (1� ǑCR)with the power estimated in the simulation
study (1� ǑS ) and with the power computed using the classical formula (1� ǑC ) defined in Equation (10).

We compare the sample size N with the required sample size NC (NC D N0C C N1C ) classically
computed using Equation (11).

2.9. Practical computing of the Cramer–Rao bound

In practice, the expected dataset obtained using the procedure that was previously described is used to
determine the variance of � (varCR). A Rasch model including a group effect is fitted to this expected
dataset with the parameters ıj (j D 1:::J ) and �2 being fixed to their assumed values.

The STATA (StataCorp, College Station, TX, USA) [27] module -raschpower-, proposed by the
authors, can be used to obtain the variance varCR and the expected power 1 � ǑCR. This mod-
ule is stored on the Statistical Software Components of the Boston College Department of Eco-
nomics (http://ideas.repec.org/s/boc/bocode.html) and can be directly downloaded from STATA with the
command ‘ssc install raschpower’.

The syntax of this module is as follows:
. raschpower [, n0(#) n1(#) gamma(#) variance(#) d(st ring)], where the #s are respectively the number
of individuals in the group 0 (N0, 100 by default), in the group 1 (N1, 100 by default), the expected
value of the group effect � (0.5 by default), the expected value of the variance of the latent trait (�2, 1
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by default), and the st ring is the name of a vector containing the difficulty parameters of the items (ıj )
defined as the vector .�1;�0:5; 0; 0:5; 1/0 by default.

We realize the determination of the variance of the group effect using the -gllamm- module of the
STATA 11 software [28] that allows fitting mixed logistic models. The -raschpower- module returns the
variance (varCR) and the standard error of the � parameter based on the CRB, the expected value of
the power 1 � ǑCR (Equation 9), the value of the power obtained using the classical formula (1 � ǑC )
(Equation 10), the required sample size computed with the classical formula (NC for equal sample size
in the two groups, that is, for r D 1) (Equation 11), and the ratio between N and NC .

We present an example of an output of this module here.

3. Results

Table I presents, for each scenario where � ¤ 0, the estimation of the variance of the group effect deter-
mined by the CRB (varCR) and the mean value of this quantity obtained by simulations (varS ). These
values are always very close to one another. We observe a decrease of the variance with the sample size
and the number of items but a slight increase when the group effect increases.

Table II presents, for each values of J and N0 D N1, the estimated value of the type I error obtained
with the simulation study. All the type I errors are close to the expected value of 5%, and none of them
are significantly different from 5%. The type I error of the Wald test is well maintained at level ˛.

Table I. Variance of the group effect based on the Cramer–Rao bound (varCR) and estimated by simulations
(varS ) for different values of the group effect (�), the sample sizes per group (N0 andN1 considered as equal),
and the number of items J of the questionnaire (for a variance of the latent trait set at �2 D 1).

�

0.0 0.2 0.5 0.8
N0 DN1 varCR = varS varCR = varS varCR = varS varCR = varS

J D 5 items 50 0.0821 / 0.0822 0.0821 / 0.0822 0.0826 / 0.0825 0.0831 / 0.0832
100 0.0410 / 0.0411 0.0411 / 0.0411 0.0412 / 0.0412 0.0416 / 0.0416
200 0.0205 / 0.0205 0.0205 / 0.0205 0.0206 / 0.0206 0.0208 / 0.0208
300 0.0137 / 0.0137 0.0137 / 0.0137 0.0137 / 0.0137 0.0138 / 0.0138
500 0.0082 / 0.0082 0.0082 / 0.0082 0.0082 / 0.0082 0.0083 / 0.0083

J D 10 items 50 0.0642 / 0.0638 0.0642 / 0.0639 0.0643 / 0.0640 0.0647 / 0.0642
100 0.0320 / 0.0319 0.0321 / 0.0319 0.0321 / 0.0320 0.0323 / 0.0321
200 0.0160 / 0.0159 0.0160 / 0.0160 0.0161 / 0.0160 0.0161 / 0.0161
300 0.0107 / 0.0106 0.0106 / 0.0106 0.0107 / 0.0107 0.0107 / 0.0107
500 0.0064 / 0.0064 0.0064 / 0.0064 0.0064 / 0.0064 0.0064 / 0.0064

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1277–1290
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Table II. Type I error estimated by simulations for different values
of the sample sizes per group (N0 and N1 considered as equal) and
the number of items J of the questionnaire (for � D 0 and a variance
of the latent trait set at �2 D 1).

N0 DN1 J D 5 items J D 10 items

50 0.047 0.046
100 0.038 0.061
200 0.058 0.041
300 0.047 0.048
500 0.054 0.053

Table III presents, for each scenario, the estimation of the power (1� ǑCR) of the Wald test based on
the estimated value of the CRB, the value of the power obtained by simulation (1� ǑS ), and the expected
value of the power computed with the classical formula (1� ǑC ). We observe that 1� ǑCR and 1� ǑS
are close to one another, whatever the values of N , J , and � ; the difference ranges between �0:023
and 0:025 with a mean almost equal to 0. Concerning the power obtained by the classical formula, it is
always higher than 1� ǑCR and 1� ǑS (differences between 1� ǑC and 1� ǑCR ranges between 0:000
and 0:288 with a mean at 0:099). The powers increase with N and � . The powers 1 � ǑCR and 1 � ǑS
increase with J , but this is not the case for 1� ǑC that remains constant whatever the value of J .

Table IV presents the required sample size per group (N0C D N1C D NC =2) computed with the
classical formula (Equation 11) to achieve the same power as the one obtained using the CRB (1� ǑCR)
and the ratio between the total sample sizes used in the simulations and the ones obtained with the clas-
sical formula (N=NC ). We observe that the classical formula gives a smaller required sample size than
the one used in the simulations to obtain the same specified value of power. The ratio between the two
sample sizes decreases as J increases but seems to be stable for a given number of items with the same
difficulty parameters, whatever the values of N . The value of the group effect (�) seems to have a small
impact on this ratio.

4. An example of sample size determination in a clinical context

We illustrate the results of this paper with an example coming from a pilot study whose data were used
for sample size calculations for the planning of a future larger study [18]. The main objective of the

Table III. Powers computed from the Cramer–Rao bound (1 � ǑCR) obtained by simulations (1 � ǑS ) and
expected with the classical formula (1� ǑC ) for the Wald test comparing the mean values of the latent trait in
the two groups for different values of the group effect (� ¤ 0), sample sizes per group (N0 andN1 considered
as equal), and number of items J of the questionnaire (for a variance of the latent trait set at �2 D 1 and
˛ D 5%).

�

0.2 0.5 0.8
N0 DN1 1� ǑCR=1� ǑS=1� ǑC 1� ǑCR=1� ǑS=1� ǑC 1� ǑCR=1� ǑS=1� ǑC

J D 5 items 50 0.107/0.096/0.169 0.413/0.399/0.705 0.792/0.817/0.979
100 0.167/0.169/0.293 0.693/0.675/0.942 0.975/0.977/1.000
200 0.287/0.285/0.516 0.936/0.930/0.999 1.000/1.000/1.000
300 0.401/0.409/0.688 0.989/0.990/1.000 1.000/1.000/1.000
500 0.598/0.583/0.885 1.000/0.999/1.000 1.000/1.000/1.000

J D 10 items 50 0.124/0.117/0.169 0.505/0.511/0.705 0.882/0.872/0.979
100 0.201/0.223/0.293 0.797/0.813/0.942 0.994/0.993/1.000
200 0.353/0.330/0.516 0.977/0.976/0.999 1.000/1.000/1.000
300 0.492/0.498/0.688 0.998/0.998/1.000 1.000/1.000/1.000
500 0.706/0.721/0.885 1.000/1.000/1.000 1.000/1.000/1.000
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Table IV. Power determined from the Cramer–Rao bound (1� ǑCR), sample sizes (per group) obtained with
the classical formula (N0C D N1C D NC =2) for a power (1� ǑCR) and ratio between the total sample size
used in the simulations and the one computed with the classical formula (N=NC ), for different values of the
group effect (� ¤ 0), sample sizes per group (N0 and N1 considered as equal), and number of items J of the
questionnaire (for a variance of the latent trait set at �2 D 1 and ˛ D 5%).

�

0.2 0.5 0.8
N0 DN1 1� ǑCR=

NC
2 = N

NC
1� ǑCR=

NC
2 = N

NC
1� ǑCR=

NC
2 = N

NC

J D 5 items 50 0.107/ 24.36/2.05 0.413/ 24.22/2.06 0.792/ 24.06/2.08
100 0.167/ 48.70/2.05 0.693/ 48.54/2.06 0.975/ 48.10/2.08
200 0.287/ 97.36/2.05 0.936/ 97.05/2.06 1.000/ 96.34/2.08
300 0.401/146.14/2.05 0.989/145.53/2.06 1.000/144.42/2.08
500 0.598/243.52/2.05 1.000/242.54/2.06 1.000/240.71/2.08

J D 10 items 50 0.124/ 31.14/1.61 0.505/ 31.09/1.61 0.882/ 30.90/1.62
100 0.201/ 62.33/1.60 0.797/ 62.31/1.60 0.994/ 62.00/1.61
200 0.353/124.97/1.60 0.977/124.68/1.60 1.000/124.45/1.61
300 0.492/187.91/1.60 0.998/187.44/1.60 1.000/186.50/1.61
500 0.706/313.29/1.60 1.000/312.61/1.60 1.000/310.88/1.61

upcoming study is to compare the level of pain between two groups of patients having muscular dystro-
phies. The first group concerns patient with a Steinert’s disease, and the second group on patients having
another muscular dystrophy.

In the pilot study, the researchers recruited 52 patients with a Steinert’s disease and 95 patients with
another muscular dystrophy. They used the Nottingham Health Profile (NHP) questionnaire to evaluate
the global QoL of the patients. In the upcoming study, we focus on the evaluation of pain. The pain
dimension of the NHP is composed of eight binary items. In the pilot study, the researchers estimated
the difficulty parameters at .2:61; 2:94; 1:75; 0:46;�:11; 0:36; 1:28; 2:23/. They estimated the variance
of the latent trait 1:9832 and the difference between the means in the two groups of patients at 0:649.
The difference between the two means was not significant at 5% in this pilot study, but the p-value
(p D 0:08) might suggest a possible lack of power for this study. So, it was interesting to determine a
sample size to be able to significantly detect such a difference considered as clinically relevant.

The classical formula determines a sample size of 197 patients in each group for ˛ D 5% and
1� ˇ D 90%. The -raschpower- STATA module has been used with these values.

The -raschpower- STATA module predicts a power of only 80% to detect a difference on the means of
the latent trait between the two groups with this sample size using a Rasch model. The classical formula
predicts only 148 patients per groups to obtain such a power. The ratio between the two sample sizes is
estimated at 1:34. The results obtained with the simulation study designed in this paper show that this
ratio is constant for a given vector of difficulty parameters, whatever the sample size. Consequently, it
is possible to use this ratio to predict an accurate sample size from the sample size obtained with the
classical formula: the correct sample size is approximated at 197 � 1:34 D 264 patients per group. The
-raschpower- STATA module is run with this new value.

The power estimated with this new sample size is estimated at 90.22%, which is very close to the
expected value of 90%.

To confirm these results, we simulate 1000 datasets with eight items whose difficulties are equal to
the ones used with -raschpower-. We used a normal distribution of variance 1:9832 with a mean equal to
�0:649=2 for the first group and 0:649=2 for the second group to simulate the latent trait. We conducted
this short simulation study with 197 and 264 individuals for the first and second groups, respectively. We
fitted each simulated dataset using a Rasch model considering the difficulty parameters and the value of
the variance of the latent trait as known and estimating the group parameter. With 197 individuals per
group, the power obtained on the Wald test on the group effect is equal to 80:5%, and with 264 individ-
uals per group, this power is equal to 89:7%. These results confirm the possibility to use such a process
to determine a sample size in the context of the Rasch model.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1277–1290
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5. Discussion

We proposed a theoretical approach for IRT-based sample size determination for two-group
cross-sectional comparisons. It takes into account item parameters, the minimum clinically relevant
difference expressed as the difference of the means of the latent traits as well as its variance whose
derivation is approximated using Fisher’s information and CRB property. We computed the power and
the corresponding sample sizes obtained using this strategy and the usual one based on the classical
formula for normally distributed endpoints and compared for a variety of situations often encountered in
clinical and epidemiological research.

The estimate of the variance of the difference between the means of the latent traits in the two groups
obtained using the proposed methodology is supposed to achieve equality on Cramer–Rao’s inequal-
ity if it is efficient and hence corresponds to the minimum variance unbiased estimator. MML, which
is used for estimation, is known to provide asymptotically efficient estimators [26]; thus, it might be
hypothesized that equality of the CRB is attained at least asymptotically.

Comparisons of sample sizes and corresponding power computed using either the classical sample
size formula developed for manifest normally distributed endpoints or the proposed IRT-based strategy
illustrate the fact that the classical formula is inadequate for IRT models. Indeed, performing such sam-
ple size calculations leads to an underestimation of the size of the study if IRT models are intended to be
used for analysis of PRO data and hence a substantial loss in power. In particular, a strong impact of the
number of items in the questionnaire on power has been observed: the power increases with the length
of the studied questionnaire (J ). This constitutes an important issue because the classical formula does
not take into account the size of the questionnaire (J ). This point has already been stressed [29, 30] as
well as the fact that, as the number of items increases, the power obtained using IRT modeling seems
to progressively attain the power associated with the classical formula [18]. This could represent a theo-
retical situation where the precision of the measure of the latent trait is very good, and therefore might
correspond to the case where the latent variable could have characteristics similar to those of an observed
variable.

Comparison of the required sample size computed using both formulas for a given value of power
shows that the ratio between the sample size using CRB and the one obtained by the classical formula
was higher than 1. Moreover, this ratio seems to depend on the number of items (and on their difficulty
parameters—results not shown) and also but more slightly on the value of the group effect � . However,
the study size and the value of the desired power do not seem to have an impact on this ratio. A further
topic will be to determine whether a correction coefficient depending on these parameters and this ratio
would allow a simple modification of the classical formula that could make it suitable for latent vari-
ables. The next step could be to determine an analytic formula for this ratio. Meanwhile, the -raschpower-
module can provide a reliable numerical approximation because this ratio seems to be very stable for
a given vector of items difficulties and value of � , whatever the sample size. The illustrative example
proposed in the paper shows a nice and easy way to determine a suitable sample size for latent variables.

The main drawbacks of the proposed approach are its complexity compared with the classical formula
and the fact that the practical implementation of this approach is based on an estimation of the group
effect � , even if during the planning of a study, all the parameters are assumed to be known and are
fixed. We also explored the impact of using an estimate of � instead of a fixed value on the estimated
bias of the power in the 30 tested scenarios. On the one hand, we observed that the absolute difference
between 1 � ǑCR and 1 � ǑS was small (it ranged between 0:000 and 0:025 with a mean at 0:007 and
a median at 0:004). These differences generally are not relevant in practice. On the other hand, a linear
model explaining the absolute differences j.1 � ǑCR/ � .1 � ǑS /j as a function of j O� � � j adjusted or
not on the sample size (N ), the number of items (J ), and the real value of the group effect (�) was
fitted and showed a nonsignificant effect of j O� � � j (p D 0:22 without adjustment and p D 0:21 after
adjustment). It is therefore expected that using a fixed value for � or estimating it should have a very
slight impact on power 1 � ǑCR and on the associated sample size. However, it could be important to
improve the -raschtest- STATA module to be able to estimate the power without such an estimation of the
� parameter.

The knowledge of the difficulty parameters of the items can be considered as another drawback. Nev-
ertheless, we can stress that nowadays (i) many PRO instruments are also validated using IRT models;
(ii) items banks are being constituted [14]; and/or (iii) previous data from a pilot study might also be
used as we did in our example. Hence, estimation of item parameters coming from validated PRO can
be obtained and used for IRT-based sample size calculation. Moreover, Sébille et al. [18] realized a
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simulation study in order to estimate the power using IRT with known or unknown difficulty parame-
ters. They showed that the power is slightly affected by a relatively poor precision of the parameter (˙1
compared with the real values of the parameters). Hence, precise knowledge of the difficulty parameters
seems not to be essential, and we might expect to be able to estimate the power of a study with a good
enough precision.

An extension of this work concerns the fact that in the present approach, the difficulty parameters and
the variance of the latent trait are considered as known and are not estimated jointly with the � parameter.
In practice, it could be preferable to fix the values of the difficulty parameters to be comparable between
different studies. However, concerning the variance of the latent trait (�2), this parameter is rarely known
with good precision, and it is systematically (re)estimated. The approach will be developed to give the
possibility to estimate jointly � and �2 (and eventually the difficulty parameters as well). This devel-
opment is complex because correlations between the different estimators will appear in the analytical
development, but it could be very useful in practice.

Another extension of this work concerns the development of this approach to other IRT models. Its
implementation for other dichotomous models like the Birnbaum model [31] or the one parameter logis-
tic model (OPLM) [21] seems easy. These two models allow weighting the items for the estimation of
the latent trait (in the Rasch model, the contribution of each item to the estimation of the latent trait
is the same). The difference between the Birnbaum model and the OPLM is that these weights can be
estimated (Birnbaum model) or fixed by the user (OPLM). In the case of the OPLM, these weights are
known a priori, and so it is easy to apply the procedure described in this paper. In the Birbaum model, the
user must have an idea of these weights that have to be estimated. For planning purposes, these weights
are fixed to assumed values, as for the difficulty parameters of the Rasch model.

The extension to polytomous models like the partial credit model [24] or the rating scale model [23]
can reveal some other difficulties notably concerning the determination of the expected dataset because
for such models, the number of response patterns could be very important, even with a small number of
items. Moreover, with the partial credit model, there is one difficulty parameter per category of response
to each item, and so the number of parameters can be large, and it could be difficult to have a good idea
of an appropriate value for each of them.

Extending the proposed approach to other designs often used for PRO data such as longitudinal stud-
ies would also be worthwhile. Longitudinal IRT models [30] could be used for this purpose to provide
valid sample size methodology for testing a time effect in the case of a one-sample design (single group)
or a time effect, a group effect and possible interaction between them in the case of a two-sample design
(two independent groups) or more.

Some other aspects related to the proposed approach could also be investigated more thoroughly. In
particular, it could be interesting to investigate potential effects of some parameters on the expected
power based on the CRB, notably the impact of the values of the difficulty parameters of the items in
terms of mean location and dispersion of these parameters. Moreover, despite great efforts, clinicians
and statisticians often face a high degree of uncertainty on some parameters when designing a study on
PRO endpoints to justify sample size. Therefore, it could be valuable to investigate the influence of the
precision of the values of the main parameters (difficulty parameters, group effect, and variance of the
latent trait) on the obtained power. Indeed, the impact of fixing incorrect values for these parameters is
an important topic for practical use of this approach, where these values are not always known with very
good precision.

APPENDIX A.

Let l D log.L/, we wish to obtain the second derivative with respect to � of the log-likelihood l , we
shall in the following use l instead of l.�2; ı1; :::; ıJ ; � jx/. Recall that because we are at the planning
phase of a study, � , �2, and ı1; :::; ıJ are fixed parameters set to some hypothesized values.

We can write the first derivative with respect to � of the log-likelihood as

@l

@�
D

@

@�
log

0
@ 1Y
gD0

NgY
nD1

Z JY
jD1

exp.xnj .� C .�1/1�gN1�g�=N � ıj //

1C exp.� C .�1/1�gN1�g�=N � ıj /
G.� j�2/d�

1
A (13)
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Let for nD 1; :::; N and g D 0; 1:

fgn D

Z JY
jD1

exp.xnj .� C .�1/1�gN1�g�=N � ıj //

1C exp.� C .�1/1�gN1�g�=N � ıj /
G.� j�2/d� (14)

Hence,

@l

@�
D

1X
gD0

NgX
nD1

@

@�
log.fgn/ (15)

We can write the second derivative with respect to � of the log-likelihood as

@2l

@�2
D

1X
gD0

NgX
nD1

 
@2fgn

@�2
� fgn �

	
@fgn

@�


2!
�

1

.fgn/2
(16)

If we denote fn and fnj the following functions (nD 1; :::; N and j D 1; :::; J :

fn D

Z JY
jD1

exp.xnj .� C � � ıj //

1C exp.� C � � ıj /
G.� j�2/d�/ (17)

where

fnj D
exp.xnj .� C � � ıj //

1C exp.� C � � ıj /
(18)

We can write the first and second derivatives of fgn (g D 0; 1) with respect to � as a function of fn
(nD 1; :::; N ):

@fgn

@�
.�/D .�1/1�gN1�g=N �

@fn

@�

�
.�1/1�gN1�g�=N

�
(19)

@2fgn

@�2
.�/D

�
N1�g=N

�2
�
@2fn

@�2

�
.�1/1�gN1�g�=N

�
(20)

where

@fn

@�
D

Z 0
@ JX
jD1

@fnj

@�

JY
i¤j;iD1

fni

1
AG.� j�2/d�: (21)

@fnj

@�
D
xnj exp.xnj .� C � � ıj //C .xnj � 1/exp..xnj C 1/.� C � � ıj //

.1C exp.� C � � ıj //2
(22)

and

@2fn

@�2
D

Z JX
jD1

0
@@2fnj
@�2

JY
iD1;i¤j

fni C
@fnj

@�

JX
kD1;k¤j

@fnk

@�

JY
lD1;l¤k;l¤j

fnl

1
AG.� j�2/d� (23)

with

@2fnj

@�2
D

�
x2nj exp.xnj .�C� � ıj //C.x2nj � 1/exp..xnj C 1/.� C � � ıj //

�
� .1C exp.� C � � ıj //2

.1C exp.� C � � ıj //4
(24)

�
2exp.� C � � ıj/.1Cexp.�C� � ıj//Œxnj exp.xnj .� C � � ıj//C.xnj�1/exp..xnj C 1/.� C � � ıj //	

.1C exp.� C � � ıj //4
(25)
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