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Abstract

Patient-reported outcomes (PRO) have gained importance in clinical and epidemiological research and aim at assessing
quality of life, anxiety or fatigue for instance. Item Response Theory (IRT) models are increasingly used to validate and
analyse PRO. Such models relate observed variables to a latent variable (unobservable variable) which is commonly
assumed to be normally distributed. A priori sample size determination is important to obtain adequately powered studies
to determine clinically important changes in PRO. In previous developments, the Raschpower method has been proposed
for the determination of the power of the test of group effect for the comparison of PRO in cross-sectional studies with an
IRT model, the Rasch model. The objective of this work was to evaluate the robustness of this method (which assumes a
normal distribution for the latent variable) to violations of distributional assumption. The statistical power of the test of
group effect was estimated by the empirical rejection rate in data sets simulated using a non-normally distributed latent
variable. It was compared to the power obtained with the Raschpower method. In both cases, the data were analyzed using
a latent regression Rasch model including a binary covariate for group effect. For all situations, both methods gave
comparable results whatever the deviations from the model assumptions. Given the results, the Raschpower method seems
to be robust to the non-normality of the latent trait for determining the power of the test of group effect.
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Introduction

The evaluation of perceived health outcomes or more generally

patient-reported outcomes (PRO) is increasingly performed in

different health areas. PRO combine self-reported information

provided by the patient on his health or his treatment and aims at

assessing his quality of life, anxiety or pain for instance. PRO differ

from other health outcomes because these patient’s characteristics

cannot be directly measured such as overall survival for instance.

These particular outcomes are usually evaluated using self-

assessment questionnaires that are composed of a set of questions

(called items) whose responses provided by the patients are

analyzed.

Analysis of PRO can be based on two approaches: Classical

Test Theory (CTT), or Item Response Theory (IRT) [1]. CTT

relies on the observed scores (possibly weighted sum of patient

item’s responses) that are assumed to provide a good representa-

tion of a ‘‘true’’ score. IRT relies on an underlying response model

relating the items responses to a latent unobservable variable, often

called latent trait, usually assumed to follow a normal distribution

and interpreted as a measure of the studied concept (quality of life,

for example). IRT models are increasingly used to validate PRO

instruments and to analyze these particular outcomes [2] [3] [4].

Moreover, amongst the large family of IRT models, the Rasch

model [5] is often used for dichotomous items in health sciences.

This model has interesting psychometric properties, in particular

the specific objectivity property [6]. It involves that the patients

can be objectively compared, that is to say independently of the

questionnaire. Besides, the Rasch model presents several advan-

tages such as the possibility to obtain a measure of the latent trait

on an interval scale as well as the management of missing data and

of possible floor and ceiling effects [7].

Despite the widespread use of PRO, the design and planning of

studies, regarding careful a priori sample size and power

determination, remain hardly ever provided. Furthermore, it has

been stressed that many studies might not be adequately powered

to determine clinically important changes in PRO [8] [9]. Specific

sample size methodology is importantly needed for clinical

research including PRO to avoid inadequately sized studies [10].

An inappropriate sample size determination could indeed lead to

erroneous and uninformative conclusions or expose patients to

inappropriate medical strategies.

The sample size for the comparison of a normally distributed

endpoint in two independent groups can be computed using the

usual formula conditionally on some assumed parameters values.

Generally, the expected difference between mean values of the

studied endpoint in the two groups (group effect c) and the

variance of the endpoint (s2), often assumed to be equal in both

groups, have to be defined. These parameters can be determined

from a pilot study, the literature or experts opinions. Using these
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assumptions the sample size in each group can be determined for a

given type I error and a given power.

The usual sample size formula could be used in the framework

of IRT when the latent trait (endpoint) is assumed to be normally

distributed. However, a previous study has shown that this widely-

used formula was inadequate for IRT models because it leads to

an underestimation of the required sample size [11]. This

underestimation is closely related to the fact that the latent trait

is an unobservable variable and that its estimation requires a

model which creates uncertainty. Moreover, sample size determi-

nation is a key point for a rigorous planning in order to be able to

determine an expected clinically relevant difference while

controlling the type I and type II errors. Hence, an adaptation

of the classical formula was required in order to offer a theoretical

method for calculating the number of subjects for PRO studies

[11] using IRT.

From this perspective, a method has been developed for power

and sample size determination when an IRT model, the Rasch

model, is intended to be used for analysis [12]. This method

named Raschpower provides the power for a given sample size

during the planning stage of a study in the framework of IRT.

This method has been validated under some conditions when all

the assumptions of the underlying model were fulfilled. The aim is

to study the impact of misspecifications of the distribution of the

latent trait on the performance of the Raschpower method. The

objective is to ensure that the Raschpower method produces

reliable results when the required assumptions are not fulfilled. A

simulation study is performed to assess whether the Raschpower

method can still be used when the latent trait is not normally

distributed.

Method

Rasch model
In IRT, the link between a latent trait (quality of life for

example), and item parameters (items difficulties) is modelled. The

probability that a person i (i = 1,…,N) responds xij to an item j

(j = 1,…,J) is modelled with a logistic model depending on two

parameters, the value of the latent trait of the person, hi and the

difficulty of the item j, dj. For a questionnaire composed of J

dichotomous items answered by N patients, the Rasch model can

be written as follows:

Pr Xij~xij hi,dj

��� �
~

exp xij hi-dj

� �� �
1zexp hi-dj

� � with H*N m,s2
� �

ð1Þ

where xij is a realization of the random variable Xij. hi are

realizations of the random variable H, h1, h2,…, hN are mutually

independent with a common underlying distribution which is

generally assumed to be a normal distribution. In this case, the

parameters of the Rasch model can be estimated by marginal

maximum likelihood (MML) [13]. The Rasch model relies on

three assumptions: i- unidimensionality: a unique latent variable

explains the responses to the items; ii- monotonocity: the

probability of a positive response to an item is a non-decreasing

function of the latent variable; iii- local independence: given an

individual, the item responses are independent of one another. A

constraint has to be adopted to ensure the identifiability of the

model: in the present paper, the mean of the latent trait (m) is set to

0 [14] but the constraint can be put on either the mean of the

latent trait or the mean of items difficulties.

Determination of the power by the Raschpower method
To compare the means of the latent trait in two independent

groups, we use the group effect (c) which is the difference between

the means of the latent trait in each group. The expected sample

size is N0 in the first group and N1 in the second group. The latent

regression Rasch model including a binary covariate for group

effect is defined by the following:

Pr Xij~xij hi,dj,c
��� �

~
exp xij hizgic{dj

� �� �
1zexp hizgic{dj

� � with H*N 0,s2
� �

ð2Þ

To identify the model, the mean of the latent trait (m) is 0 where m
is the mean between m0 and m1, each of them weighted by the

sample sizes N0 and N1.

Consequently,

N0m0zN1m1~0

c~m1{m0

�
u

m0~{
N1c

N0zN1

m1~
N0c

N0zN1

8>><
>>:

H is a random variable with normal distributions

N {
N1

N0zN1
c,s2

� �
and N

N0

N0zN1
c,s2

� �
in the first and

the second group, respectively. Therefore gi corresponds to

{
N1

N0zN1
in the first group and to

N0

N0zN1
in the second group.

The variance of the latent trait s2 is assumed to be equal in the

two groups.

The Wald test is used to compare the means of the latent trait in

the two independent groups. The hypotheses for a two-sided test of

comparison are defined as H0: c= 0 against H1: c?0. To perform

the test, an estimate C of c and its variance are required and it is

assumed that the test statistic
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(C)
p follows a normal distribu-

tion N(0,1) under H0. The patient’s responses are also required to

estimate the group effect’s variance. At the planning stage, they are

not known but a planning dataset can be determined conditionally

on the assumed values for the sample size in each group (N0 and

N1), the group effect (c), the item difficulties (dj) and the variance of

the latent trait (s2). For each possible response pattern

(corresponding to a combination of responses of an individual to

all items), the associated probability for each group is computed

using the Rasch model. The expected frequency of each response

pattern in each group is then determined. For dichotomous items,

the number of response patterns corresponds to 2J where J is the

total number of items. The dataset composed of the expected

frequencies associated to each response pattern is then analyzed

with a latent regression Rasch model including a binary covariate

for group effect. From this model, we estimate the group effect (c)

and its variance by the method of marginal maximum likelihood.

To approximate the variance, we use the property of the Cramer-

Rao (CR) bound which allows obtaining the lower bound of the

variance of an unbiased estimator from the inverse of Fisher

information. The expected power of the test of the group effect

based on the Cramer-Rao bound can be approximated by [12]:

1{b̂bCR&1{W z1{a=2{
cffiffiffiffiffiffiffiffiffiffiffiffiffi

vâar(ĉc)
p

 !
ð3Þ

where c is assumed to take on positive values, z1-a/2 is the quantile

of the standard normal distribution, W is the cumulative standard
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normal distribution function, and vâar(ĉc) is evaluated using the

Cramer-Rao bound.

Simulation study
The Raschpower method assumes a normal distribution for the

latent trait. To evaluate its robustness to departures from this

normality assumption, the power determined with this method was

compared to the power obtained using a simulation study,

regarded as a reference. The data were simulated with a non-

normal distribution for the latent trait and the empirical rejection

rates obtained when fitting a model (assuming a normal

distribution for the latent trait) to these simulated data was

compared to the power obtained with the Raschpower method.

The first step consisted in simulating data according to the

parameters and underlying assumptions. The expected values for

the parameters that are used at the planning stage of a study are

the group effect (c), the number of items (J), the item difficulties (dj)

but also the distribution of the latent trait. Two independent

datasets (groups) were simulated. Each simulated scenario,

corresponding to a combination of parameters, was replicated

1000 times. The simulated datasets were subsequently analyzed

with a latent regression Rasch model including a binary covariate

for group effect and assuming the normality assumption for the

latent trait.

Simulated distributions of the latent trait. Data were

simulated with a latent trait that followed a beta distribution

depending on two parameters v and t. The beta distribution had

different shapes depending on the value of these parameters which

are both greater than zero (Figure 1). For example, when v and t
were lower than 1, we obtained a U shaped distribution. If v was

set to 1 and t was greater than 1 we obtained a L shaped

distribution. Similarly, when v was greater than 1 and t was set to

1 we obtained a J shaped distribution.

These scenarios with different distributions of the latent trait

reflect some specific situations:

– The U shaped distribution means that the population is

composed of individuals responding positively to most items

and inversely, of individuals responding negatively to most

items. The parameters of the beta distribution for this scenario

have been fixed to v= t= 0.4.

– The L shaped distribution corresponds to a situation in which

individuals respond mostly negatively. The parameters of the

beta distribution have been fixed to v= 1 and t= 4.

– The J shaped distribution is the opposite situation where

individuals respond mainly positively. In this case, the

parameters of the beta distribution have been fixed to: v= 4

and t= 1.

Parameters of the simulation study. Several values of the

simulated parameters were investigated. These values reflect cases

often encountered in clinical and epidemiological research. The

sample size in each group was: Ng = 50, 100, 200, 300, and 500.

The number of items per questionnaire was: J = 5 and 10. The

different values of group effects were: c= 0, 0.2, 0.5, 0.8. The

variance of the latent trait (s2) was equal to 1. The mean of the

latent trait (m) was equal to 0. The item difficulty parameters

corresponded to the percentiles of a normal distribution N(0,s2).

For J = 5, the item difficulties parameters were (dj) = (20.97,

20.43, 0, 0.44, 0.98) and for J = 10 (dj) = (21.33, 20.9, 20.6,

20.34, 20.11, 0.12, 0.36, 0.61, 0.92, 1.34). The different

distributions of the latent trait were: L, J and U shaped. The

combination of all parameters values led to 120 different cases and

the simulations were replicated 1000 times.

Type I error and power determination in the simulation

study. We estimated the group effect and its variance using the

latent regression Rasch model including a binary covariate for the

group effect on the simulated datasets. For the simulation study,

the difficulty of items and the variance of the latent trait were fixed

to their expected values. A Wald test was applied in order to

estimate the type I error computed among the simulated datasets

as the rejection rate of the null assumption (c= 0) when the group

effect was simulated at 0 (under H0). Similarly, the power was

estimated among the simulated datasets as the rejection rate of the

null assumption when the group effect was simulated at a value

different from 0 (under H1).

Evaluated criteria
To study the influence of the non-normality of the latent trait on

the performance of the Raschpower method, several criteria were

compared. The type I error (a) and their confidence interval were

estimated using the simulated datasets. The power (1-bS) was

obtained in the same way and compared to the power given by the

Raschpower method based on the Cramer-Rao bound, (1-bCR).

This latter is computed with the Raschpower module of Stata [12].

These comparisons allow determining whether the estimated

power differ when the latent trait is not normally distributed. As

the estimation of (1-bCR) is based on the estimated value of the

variance of c, a good estimation of the power requires a good

estimation of this variance. Hence, the mean of the variance of the

Figure 1. Distribution of the latent trait according to the different parameters of the beta distribution.
doi:10.1371/journal.pone.0083652.g001
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group effect in the simulations is compared with the estimated

variance of the group effect using the Raschpower method. Along

with these criteria, in the simulation study, the estimations of the

group effect are studied to check that the estimated value is close to

the simulated value for all cases. For the simulation study, the

estimation of the group effect corresponds to the mean of the

estimations obtained across the 1000 simulated datasets.

Results

Type I error of the test of group effect
Table 1 shows the empirical type I error for each of the 30

combinations of number of items (J), sample sizes (Ng; g = 0,1), and

distributions of the latent trait. All the type I errors are close to the

expected value of 5%. Among the 30 estimates (when c= 0), only

two of the 95% confidence intervals do not contain the expected

value of 5%. These cases are observed with Ng = 100, J = 10 and

Ng = 200, J = 10 for a U shaped latent trait distribution

(parameters of the beta distribution v= t= 0.4).

Estimation of the group effect
Table 2 presents the mean of the estimations of the group effect

(ĉc) obtained using the simulated datasets according to the sample

size (Ng; g = 0,1), the number of items (J) and the different shapes

of the distribution of the latent trait. For all distributions of the

latent trait and parameter values, such as the sample size and the

number of items, the group effect is correctly estimated.

Estimations of the group effect (ĉc) are close to their simulated

values (c). Among the 120 estimates, only three 95% confidence

intervals do not contain the expected value of the group effect (c),

these results are not shown.

Estimation of the variance of the group effect
Table 3 presents the results of the estimation of the mean

variance of the group effect (varS) using the simulated datasets, and

the variance of the group effect obtained with Raschpower (varCR)

for different values of the group effect (c), the sample size in each

group (Ng; g = 0,1) and the number of items (J). These results are

related to the case where the latent trait has a beta U shaped

distribution.

The results show that, whatever the values of the parameters,

the estimations of the variances of the group effect are close

(between the simulations and the Raschpower method). The

difference between the estimations of the variances is on average

8.75 1024 and it fluctuates between 20.0017 (J = 10, Ng = 50,

c= 0.8) and 0.0013 (J = 10, Ng = 50, c= 0). Among the expected

effects, we find that the variance of the group effect decreases

when the sample size (Ng; g = 0,1) increases whereas it rises, but

only slightly, when the group effect (c) increases. Moreover, the

variance of the group effect drops when the number of items (J)

expands. Other simulation results obtained with L and J shaped

distributions of the latent trait are similar, the variance estimates

for the group effect obtained in the simulations are very close to

those given by the Raschpower method (results shown Table S1).

Power of the test of group effect
Figure 2 shows the power obtained using the simulated datasets

(for the U, J and L shaped distributions) and using Raschpower

according to different sample sizes (Ng; g = 0,1) in the case where

the group effect (c) is 0.5 and the number of items (J) is equal to 5.

For all distributions of the latent trait (Normal or Beta), the power

are close to each other. The difference between the powers

obtained with the simulations and with Raschpower is about

20.006 on average and fluctuates between 20.03 (J = 5, c= 0.5,

Ng = 200 and U shaped distribution of the latent trait) and 0.012

(J = 5, c= 0.5, Ng = 200 and L shaped distribution of the latent

trait). As expected, for all 120 cases (results shown in Table S2), the

power increases with the sample size (Ng; g = 0,1), the group effect

(c) and the number of items (J). For example, with the Raschpower

method using Ng = 100, with c= 0.5 and J = 5, the power is 69.4%

and it is 81.1% when J = 10.

Discussion

The Raschpower method provides Rasch-based power deter-

mination for two-group cross-sectional comparisons when a Rasch

model is intended to be used for analysing PRO data. It relies on

some assumptions and in particular the normality of the latent trait

distribution which might not be encountered in practice. The

impact of a deviation from the normality assumption on the

determination of the power of the test of group effect using the

Raschpower method was studied using simulations. The power is a

key point for the determination of sample size at planning stage for

cross-sectional studies comparing two groups and it depends on

two parameters: the group effect and its variance.

The results have shown that the powers estimated using either

simulations (with a non-normal distribution of the latent trait) or

the Raschpower method were very close. The violation of the

assumption regarding the distribution of the latent trait had very

little impact on the estimation of the variance of the group effect

and thus on the power of the test of group effect. As expected, the

power varied with different parameters; in particular, it increased

when the number of items, the sample size and the group effect

rose.

Some methodological choices can be discussed regarding both

the distributions of the latent trait and items parameters. The

robustness of the Raschpower method might be related to the fact

that the distributions of the latent trait and of the items parameters

were overlaid. Indeed, in this study, the items parameters were

simulated as regularly distributed and adapted to a population

with a latent trait distributed in the same range of values. This

reflects a questionnaire that is neither too easy nor too difficult for

patients with some balance of positive and negative responses.

Moreover, the regularity of the distribution involves that the latent

Table 1. Type I error and confidence intervals obtained using
simulations according to the sample size (Ng; g = 0,1), the
number of items (J) and the distribution of the latent trait
(Beta distribution).

J Ng U shaped J shaped L shaped

5 50 0.055 [0.042–0.071] 0.051 [0.038–0.067] 0.053 [0.040–0.069]

100 0.057 [0.043–0.073] 0.049 [0.036–0.064] 0.048 [0.036–0.064]

200 0.054 [0.041–0.070] 0.057 [0.043–0.073] 0.052 [0.039–0.068]

300 0.053 [0.040–0.069] 0.054 [0.041–0.070] 0.055 [0.042–0.071]

500 0.051 [0.038–0.067] 0.053 [0.040–0.069] 0.050 [0.037–0.065]

10 50 0.059 [0.045–0.075] 0.052 [0.039–0.068] 0.044 [0.032–0.059]

100 0.066 [0.052–0.084]* 0.038 [0.027–0.058] 0.045 [0.033–0.060]

200 0.066 [0.051–0.083]* 0.052 [0.039–0.068] 0.042 [0.030–0.056]

300 0.058 [0.036–0.064] 0.053 [0.040–0.069] 0.049 [0.044–0.074]

500 0.061 [0.047–0.078] 0.056 [0.043–0.072] 0.048 [0.036–0.063]

*Intervals not containing 5%.
doi:10.1371/journal.pone.0083652.t001
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trait of individuals is evaluated with a similar precision all over its

continuum. Finally, the choice of overlapping distributions avoids

the presence of ceiling and floor effects. It has been shown in

previous results [15] that the Raschpower method is valid when

the items distribution is overlaid with the latent trait distribution.

Some other aspects related to the robustness of the Raschpower

method could also be investigated. It could be interesting to study

some parameters misspecifications, especially those that might

affect the power of the test of group effect, such as the variance of

the latent trait (s2) for instance. The purpose would be to get more

insight regarding the impact on the performance of the Rasch-

power method when the expected value of the parameter (fixed at

planning stage) is different from the observed value on the data

(analysis stage).

The violation of the assumption of normality of the latent trait

does not impact the estimation of the variance of the group effect.

The power is correctly estimated and the Raschpower method is

robust for power analyses of PRO data analysed with a Rasch

model. This issue of robustness to misspecification of the

distribution of random effects has been approached in a more

general way in generalized linear mixed models (GLMM) from

which IRT models such as the Rasch model come from [16] [17]

[18]. The consequences of misspecifying the random-effects

distribution on the estimation and hypothesis testing in GLMM

was studied, through simulations. Different distributions and

variances of the random-effect were investigated. The results have

shown that in the context of small variance and only one random-

effect, the estimations were correct as well as the control of the

type I and II errors for all simulated distributions. Moreover, the

estimates of the fixed effects are much less sensitive to

misspecification of the random effects distribution [19].

In the framework of our study, the Raschpower method and the

Rasch model used in the simulation study were performed in the

same conditions with small variance and only one random-effect.

Furthermore, in simulations, the fixed effect (c) was estimated

without bias meaning that the estimation of the power of the group

Table 2. Mean of the estimations of the group effect ĉcð Þ obtained using simulations according to the sample size (Ng; g = 0,1), the
number of items (J) and the distribution of the latent trait (Beta distribution).

U shaped J shaped L shaped

J Ng c = 0 c = 0.2 c = 0.5 c = 0.8 c = 0 c = 0.2 c = 0.5 c = 0.8 c = 0 c = 0.2 c = 0.5 c = 0.8

5 50 0.001 0.184 0.489 0.782 0.007 0.213 0.496 0.806 0.009 0.182 0.502 0.793

100 0.004 0.198 0.495 0.796 0.010 0.206 0.499 0.809 0.011 0.202 0.492 0.798

200 20.002 0.199 0.486 0.786 3 1024 0.198 0.498 0.807 0.002 0.195 0.508 0.802

300 20.003 0.200 0.489 0.786 20.002 0.208 0.503 0.801 20.003 0.198 0.509 0.800

500 20.004 0.196 0.497 0.789 20.002 0.205 0.497 0.802 20.004 0.198 0.499 0.810

10 50 20.011 0.204 0.490 0.800 20.001 0.193 0.502 0.806 20.004 0.186 0.506 0.801

100 0.005 0.203 0.501 0.797 20.003 0.200 0.494 0.804 8 1025 0.200 0.500 0.802

200 20.005 0.201 0.500 0.795 20.001 0.193 0.501 0.810 20.007 0.197 0.502 0.809

300 0.001 0.196 0.497 0.796 20.003 0.204 0.499 0.802 20.002 0.203 0.497 0.797

500 0.002 0.197 0.497 0.794 20.002 0.204 0.503 0.799 4 1024 0.198 0.500 0.799

doi:10.1371/journal.pone.0083652.t002

Table 3. Estimation of the variance of the group effect using simulations (varS) and using the Raschpower method (varCR)
according to the different values of group effect (c), sample size in each group (Ng; g = 0,1) and number of items (J).

c

0 0.2 0.5 0.8

Ng varS varCR varS varCR varS varCR varS varCR

J = 5 50 0.0821 0.0818 0.0822 0.0819 0.0825 0.0823 0.0831 0.0827

100 0.0410 0.0409 0.0406 0.0409 0.0412 0.0411 0.0415 0.0414

200 0.0205 0.0205 0.0205 0.0205 0.0206 0.0206 0.0207 0.0207

300 0.0137 0.0136 0.0137 0.0136 0.0137 0.0137 0.0138 0.0138

500 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0083 0.0083

J = 10 50 0.0617 0.0604 0.0617 0.0606 0.0619 0.0613 0.0622 0.0639

100 0.0308 0.0303 0.0309 0.0304 0.0309 0.0310 0.0311 0.0315

200 0.0154 0.0152 0.0154 0.0153 0.0155 0.0155 0.0155 0.0156

300 0.0103 0.0103 0.0103 0.0102 0.0103 0.0103 0.0104 0.0104

500 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062

U shaped distribution case for the latent trait.
doi:10.1371/journal.pone.0083652.t003
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effect was likely not badly affected by this estimation. Thus, even

though the analyses of the simulated datasets were based on a

Rasch model assuming a normal distribution for the latent trait,

the power estimated in those simulations, seems reliable and can

be used as the reference for the comparison with the Raschpower

method. Our results are consistent with results from Litière et al.

and Fitzmaurice et al [16] [18]. These results bring new elements

about the robustness of the Raschpower method and complete

those of the literature on the robustness in GLMM. The

Raschpower method seems to be robust to non-normality of the

latent trait and the power and type I error are not affected by a

misspecification of the distribution of the latent trait.
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11. Sébille V, Hardouin J-B, Néel TL, Kubis G, Boyer F, et al. (2010)

Methodological issues regarding power of classical test theory (CTT) and item

response theory (IRT)-based approaches for the comparison of patient-reported

outcomes in two groups of patients - a simulation study. BMC Medical Research

Methodology 10: 24.

12. Hardouin J-B, Amri S, Feddag M-L, Sébille V (2012) Towards power and
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