The minimal clinically important difference determined using item response theory models: an attempt to solve the issue of the association with baseline score

Alexandra Rouquettea,b,c,d,e,*, Myriam Blanchind,V/Corinne Sébilled, Francis Guilleminf, Sylvana M. Côteg,h, Bruno Falissardia,b,h, Jean-Benoit Hardouind

a U669 –Mental Health and Public Health, Inserm, Maison de Solenn, 97 boulevard du Port-Royal, 75014 Paris, France
b UMR-S0669, Université Paris-Sud and Université Paris Descartes, Maison de Solenn, 97 boulevard du Port-Royal, 75014 Paris, France
c Research Unit on Children’s Psychosocial Maladjustment, University of Montreal, 3050 Edouard Montpetit, H3T 1J7, Montreal, Quebec, Canada
d EA 4275, Biostatistics, Clinical Research and Subjective Measures in Health Sciences, University of Nantes, Faculté de Médecine & Pharmacie, 1, rue Gaston Veil - BP 53508, 44035 Nantes Cedex 1, France
e Department of Public Health, University of Angers, CHU Angers- 49933 Angers cedex 9, France
f EA 4360 APEMAC, INSERM CIC-EC CIE& and CHU Nancy, Université de Lorraine and Université Paris Descartes, 9 avenue de la Forêt de Haye, BP 184, 54055 Vandoeuvre les Nancy cedex, France
g Department of Preventive and Social Medicine, University of Montreal, C.P. 6128, succursale Centre-ville, Montréal (Québec) H3C 3J7
h Department of Public Health, Paul Brousse Hospital, 12, avenue Paul-Vaillant-Couturier, 94804 Villejuif cedex, France

Accepted 25 October 2013; Published online xxxx

Abstract

Objectives: Determining the minimal clinically important difference (MCID) of questionnaires on an interval scale, the trait level (TL) scale, using item response theory (IRT) models could overcome its association with baseline severity. The aim of this study was to compare the sensitivity (Se), specificity (Sp), and predictive values (PVs) of the MCID determined on the score scale (MCID-Sc) or the TL scale (MCID-TL).

Study Design and Setting: The MCID-Sc and MCID-TL of the MOS-SF36 general health subscale were determined for deterioration and improvement on a cohort of 1,170 patients using an anchor-based method and a partial credit model. The Se, Sp, and PV were calculated using the global rating of change (the anchor) as the gold standard test.

Results: The MCID-Sc magnitude was smaller for improvement (1.58 points) than for deterioration (7.91 points). The Se, Sp, and PV were similar for MCID-Sc and MCID-TL in both cases. However, if the MCID was defined on the score scale as a function of a range of baseline scores, its Se, Sp, and PV were consistently higher.

Conclusion: This study reinforces the recommendations concerning the use of an MCID-Sc defined as a function of a range of baseline scores.

Keywords: Minimal clinically important difference; Questionnaires; Sensitivity and specificity; Item response theory; Rasch models; Patient-reported outcomes

1. Introduction

Multi-item questionnaires are increasingly used in longitudinal studies to measure perceived health status and assess its changes over time. Indeed, clinicians and policy makers are more and more interested in integrating patient’s perspective and experience of disease and illness in the evaluation of treatments, interventions, or public health policies [1–5]. However, a major limitation to the use of these measurement instruments in clinical research or epidemiological studies is their interpretability [6–17]. For instance, what is the meaning of a two-point reduction over a 6-month period when anxiety is assessed with a 20-point scale? Is it a trivial or meaningful difference? The minimal clinically important difference (MCID) is a concept defined to help with the interpretation of observed differences obtained in longitudinal studies using questionnaires [18].
What is new?

- The minimal clinically important difference (MCID) defined as a function of a range of baseline scores leads to a better classification of individuals having experienced “at least a minimally important change” vs. “no change” over time than the MCID defined without considering the baseline severity.
- Determining the MCID using item response theory (IRT) models does not greatly enhance its sensitivity (Se), specificity (Sp), and predictive values (PV) compared with its determination on the score scale.
- The lack of interval scale properties of the score is not fully responsible for the MCID dependence on baseline severity.

The best method for determining the MCID of a questionnaire is still under debate; however, anchor-based methods are recommended by numerous authors as they compare observed score differences with external criteria that have clinical relevance [7,11,12,14,19]. These criteria can be indicators of clinical response or illness evolution, but the most used are patient-based global ratings of change (GRC) because they provide a simple measure of the significance of change from the individual perspective (GRC) because they provide a simple measure of the significance of change from the individual perspective [3,13,14,19,20]. In practice, multiple anchors are more and more often used in the same study [21–23].

Several issues are, nevertheless, still complicating the MCID determination, especially its variations among populations, estimations approaches, and so on and raise questions about the existence of a unique questionnaire-specific MCID [11,24–27]. One of these issues concerns the influence of the subjects’ baseline score (BS) on the MCID value calculated using the anchor-based methods, as it has been shown in various studies [9,27–36]. For that matter, various authors have recommended to define the MCID as a function of a range of BS rather than one single MCID [12,14,19,30,35]. Thus, to be able to conclude on the meaningfulness of one’s change, different MCID values should be considered depending on the subject’s BS.

Several origins to this phenomenon have been mentioned [12]. The first one can be explained in psychophysical terms and is in relation with the subjective feature of the MCID concept: subjects’ perception of a clinically meaningful change can be different depending on their baseline severity [37]. The second one is related to the statistical nature of the MCID concept and is called regression to the mean that describes the statistical tendency of extreme scores to become less extreme at follow-up [19,30]. At last, two other potential origins of the MCID association with baseline severity concern the score itself (possibly weighted sum of the item responses) used as a measure of the construct (ie, pain, anxiety, etc.) evaluated by the questionnaire. One of these origins is due to the upper and lower bounds of this score, which are responsible for the floor/ceiling effects: patients whose BS is close to the endpoints of the scale are not able to register a large change because such a change would exceed the span of the scale [12,25,36,37]. The other one concerns the scale level of the score, which has, not necessarily, the interval scale properties. With an interval scale, units along the scale are equal to one another [4,36,38,39]. The present study focuses on the potential lack of interval scale properties of the score and its role in the MCID dependence to BS phenomenon. Indeed, if the score scale is not an interval scale, interpretation of score differences can vary depending on the different portions of the scale.

Models from the item response theory (IRT) are convenient tools to analyze questionnaire data and express the results on an interval scale. In this theory, the construct measured by the questionnaire, called latent trait, is assessed by a quantitative variable with interval scale properties, the trait level (TL) [40]. Thus, if the questionnaire measures anxiety (the latent trait), for example, an x-unit difference represents the same quantity whatever its location on the TL scale (low, medium, or high level of anxiety). If our hypothesis concerning the role of the interval scale properties in the MCID association with baseline severity is true, the MCID determination on the TL scale using an IRT model could therefore avoid this phenomenon. We could, thus, expect fewer misclassifications of individuals having experienced “at least a minimally important change” vs. “no change” over time than with the MCID determined on the score scale.

The aim of our study was therefore to compare the sensitivity (Se), specificity (Sp), positive and negative predictive values (PPVs and NPVs) of the MCID determined on the score scale (MCID-Sc) and the TL scale (MCID-TL) using an IRT model and an anchor-based method in which the external criteria is considered as the gold standard test.

2. Methods

2.1. Data source

Data came from a French, multicenter, longitudinal, prospective, SATISQOL (SATisfaction and Quality Of Life) study composed of 1,709 hospitalized patients, enrolled between October 2008 and September 2010, younger than 75-year-old, and attending surgery or medical intervention for a chronic illness of one of the following systems: cardiovascular, musculoskeletal, nephrology, urology, digestive, pulmonary, or endocrine. To be included, patients needed to speak French, have sufficient cognitive function to complete a self-administered questionnaire, and exhibit symptoms of their chronic illness for, at least, 6 months. They
were computed as the difference between baseline (2.3.1. MCID-Sc determination

in both circumstances[14,15,19,25,28].

With deterioration, the following analyses were performed

change is likely to be different for improvement compared

2.3. Analyses

eral now?'' Patients could choose between five responses:

"somewhat worse,'' and "much worse.''

"much better,'' "somewhat better,'' "about the same,''

To ensure the construct’s unidimensionality required by

the IRT model used in this study, analyses were performed

on the five items of the general health (GH) subscale. Each

of these items was rated on an ordinal scale with five cate-

gories. The score, ranging from 0 (worst perceived general

health) to 100, was computed as recommended by the

MOS-SF36 user’s guide [43]. Likewise, an individual mean

imputation was performed if there were less than three

missing responses in the GH subscale as advocated.

The item assessing health transition at the 6-month

follow-up was chosen to be used as the GRC: “Compared

to six months ago, how would you rate your health in gen-

eral now?” Patients could choose between five responses:

“much better,” “somewhat better,” “about the same,”

“somewhat worse,” and “much worse.”

Patients with three or more missing responses in the GH

subscale or who did not answer to the GRC at the 6-month

follow-up were excluded from the sample used for the

analyses.

2.3. Analyses

Because it is well known that the amount and quality of

change is likely to be different for improvement compared

with deterioration, the following analyses were performed

in both circumstances [14,15,19,25,28].

2.3.1. MCID-Sc determination

Changes in general health over the 6-month interval

were computed as the difference between baseline (T_1)

and 6-month (T_2) GH subscale score. The MCID-Sc was

computed as the mean score change from T_1 to T_2 in

the subgroup of patients who answered “somewhat better”

to the GRC (SB group) for improvement and in the subgroup

of patients who answered “somewhat worse” (SW group)

for deterioration. The dependence of score change to the

BS was evaluated using Pearson correlation coefficients.

Polychoric correlation coefficients were used to assess asso-

ciation between score change and responses to the GRC.

Because it is recommended by various authors, an

MCID-Sc composed of several values according to a range

of BSs was determined: the MCID-Sc$_{BS}$ [12,14,19,30,35].

Concretely, the MCID-Sc$_{BS}$ was defined as the three means

of score change from T_1 to T_2 for patients having a BS in

the first third ([0–33]), the second third ([33–67]), or the

higher third of the scale ([67–100]), in the SB group for

improvement and in the SW group for deterioration.

2.3.2. MCID-TL determination

2.3.2.1. Assumptions of IRT. IRT models rely on three

fundamental assumptions: unidimensionality, local inde-

pendence, and monotonicity. The unidimensionality of the

GH subscale was checked, at each assessment time, using

an eigenvalue analysis and the fit examination of a con-

firmatory factor analysis (CFA) model with one factor.

The root mean square error approximation (RMSEA,

acceptable fit if <0.06), the comparative fit index (accept-

able fit if >0.95), the Tucker–Lewis Index (acceptable fit

if >0.95), and the standardized root mean square residual

(acceptable fit if <0.08) were examined to evaluate the

fit of the CFA model [45]. A nonparametric IRT analysis

was also performed by fitting a monotonely homogeneous

model of Mokken to our data. A good fit, evaluated by

the Loewinger H coefficients, indicates that the three IRT

fundamental assumptions are verified [46]. Finally, the

internal consistency of the GH subscale was checked by

the computation of the Cronbach alpha coefficient, which

was considered as acceptable if it was higher than 0.7 [47].

2.3.2.2. Fit of the partial credit model (PCM) and item

parameter estimation. A PCM, an IRT model for polyto-

mous data (cf. Appendix at www.jclinepi.com), was fitted

on the data at T_1 and T_2 separately. A PCM was chosen

because it is a model of the Rasch family, which is very

commonly used in the field of health-related questionnaires

(E. Anthoine, L. Moret, A. Regnault, V. Sébille and J.-B.

Hardouin; personnal communication, 2012). This model

defines $M \times J$ item parameters, with M the number of

the response categories of the J items of the scale. In this

model, the concept measured by the scale is represented

by a random variable following a normal distribution. Fit

tests, based on a chi-squared comparison, are known to

be highly susceptible to large sample sizes. The PCM fit

was, thus, adjusted for an expected sample of 400 individ-

uals at both assessment times, which is a large enough

sample to estimate the parameters of a PCM [48].

Measurement invariance of the GH subscale was

checked using comparisons of the item parameter confi-

dence intervals at both assessment times. As recommended,

if measurement invariance is met, averaged item parame-

ters from across the two assessment times were obtained

by fitting a PCM on a data set made up of the T_1 and T_2
data sets [49,50].
2.3.2.3. MCID-TL determination. A latent regression IRT model was used to assess the TL mean variation over time within the SB/SW groups (cf. Appendix at www.jclinepi.com). The MCID-TL was thus defined as the time effect on the TL scale (TL mean change from \(T_1 \) to \(T_2 \)) in the SB group for improvement and in the SW group for deterioration, respectively. To classify patients as having experienced “at least a minimally important change” or “no change,” these MCID-TL had to be translated onto the score scale. A PCM was thus used to provide the relationship between the TL and the expected score at the GH subscale (cf. Appendix at www.jclinepi.com). Using this translation tool, the score difference equivalent to the MCID-TL was determined for each BS varying from 0.5 to 99.5 by an increment of 0.5. Thus, knowing patients’ BSs, it was possible to determine if their score change over the 6-month interval was larger than the MCID-TL. Because of the logistic form of the PCM, it was not possible to translate the MCID-TL for extreme BSs (0 or 100); therefore it was approximated to the value obtained for the nearest BS (0.5 or 99.5 respectively).

2.3.3. Se, Sp, PPV, and NPV computations

Each patient of the whole sample was classified as having experienced “at least a minimally important change” or “no change” over the 6-month interval using the MCID-Sc, the MCID-ScBS, and the MCID-TL classifications. Se, Sp, PPV, and NPV were thus computed using the patient’s response at the GRC as the gold standard classification.

2.3.4. Software

Descriptive analysis, graphs, factor analysis, and non-parametric IRT analysis were performed using Stata/MP 12.1 (College Station, TX, USA) and the Microsoft Office Excel 2007 (Redmond, WA, USA) spreadsheet program [51,52]. The item parameters and the PCM fit were estimated using RUMM 2030 (Perth, Australia) [53]. Finally, the SAS software 9.3 (Cary, NC, USA) was used to estimate the MCID-TL values using the longitudinal form of the PCM with mixed effects [54].

3. Results

At baseline, 1,709 patients (877 men—56.1%, 686 women—43.9%, missing information for 146 patients) were entered. The average age of the participants was 55.7 years [standard deviation (SD) = 14.0], with a range of 18–80 years. At 6-month follow-up, the response rate was 89.4%, that is, 1,528 patients. Among them, 58 did not answer to the GRC at \(T_2 \) and 300 had more than two missing responses to the GH subscale at \(T_1 \) or \(T_2 \), leaving 1,170 patients for the analysis. The average GH subscale score was 52.1 (SD = 22.4) at \(T_1 \) and 51.7 (SD = 23.3) at \(T_2 \). In Fig. 1, a histogram of the BS that was lower than or equal to 33 for 269 (23.0%) patients and higher than or equal to 67 for 372 (31.8%) patients is depicted.

3.1. MCID-Sc determination

The response to the GRC was “much better” for 266 (22.7%) patients, “somewhat better” for 360 (30.8%), “about the same” for 401 (34.3%), “somewhat worse” for 112 (9.6%), and “much worse” for 31 (2.6%). The MCID-Sc of the GH subscale was equal to 1.58 points [standard error (SE) = 0.76] for improvement and 7.91 points (SE = 1.26) for deterioration. To notice, the mean score change in the group of patients considered as stable (who rated their health as “about the same” compared with 6 months ago) was 3.16 (SE = 0.68). Polychoric correlation between score change and responses to the GRC was equal to 0.29.

Pearson correlation between the score change and the BS was equal to −0.35 in the SB group and −0.62 in the SW group. Box plots in Fig. 2 show the variation of the score change over the 6-month interval depending on the BS in the SB and SW groups. Globally, for improvement, the higher the BS, the smaller the score change. Conversely, for deterioration, the higher the BS, the larger the score change.

Means of score change specified in Fig. 2 for each sub-group of patients defined by their BS were used to determine the MCID-ScBS. For instance, the MCID-ScBS for improvement was equal to 8.4 (SE = 1.4) if the BS was included in [0–33] and 2.5 (SE = 1.0) if it was included in [33–67] in the SB group. If the BS was included in [67–100] in the SB group, the MCID-ScBS for improvement was set to zero because the mean score change was negative in this subgroup.

3.2. MCID-TL determination

At both times, only one eigenvalue was higher than one and the ratio of the first to the second eigenvalue was higher than four. All the criteria indicated an acceptable fit for the
one-factor CFA model, except the RMSEA which was equal to 0.088 at T1 and 0.102 at T2. However, all the Loevinger H coefficients did not detect any violation of the fundamental IRT assumptions. Finally, a good internal consistency was found at both assessment times with a Cronbach α coefficient equal to 0.81 at T1 and 0.84 at T2.

The assumptions of a good PCM fit to the data were not rejected at 5% (P = 0.19 at T1 and P = 0.32 at T2). The measurement invariance of the GH subscale was assumed because the confidence interval of the 20-item parameters estimated at T1 overlapped with their confidence interval estimated at T2. The MCID-TL for improvement was estimated at 0.0839 (SE = 0.0443) and −0.4806 (SE = 0.0833) for deterioration. It can be noted that the mean TL change in the group of patients considered as stable was equal to −0.1919 (SE = 0.0426).

In Fig. 3, the relationship between the expected GH subscale score and the TL whose logistic shape is typical of the Rasch family models is depicted. Using this translation tool, it was possible to translate the MCID-TL on the score for each BS and represent it, as in Fig. 4, on the x-axis with the BS on the y-axis. For example, a patient with a score of 20 on the GH subscale at baseline should have undergone a 1.5-point increase on the score at T2 to be classified as having experienced a minimal clinically important improvement using the MCID-TL, whereas a patient with a BS equal to 80 should have undergone a 0.5-point increase.

3.3. Se, Sp, PPV, and NPV calculations

The Se, Sp, and predictive values for the MCID-Sc, MCID-ScBS, and the MCID-TL are shown for improvement and deterioration in Table 1. All these values but one are lower than 80%.

4. Discussion

Our study was designed to evaluate the advantages of IRT models for the determination of the MCID of the MOS-SF36 questionnaire GH subscale in a sample of hospitalized...
patients suffering from a chronic disease and undergoing a therapeutic intervention. In our study, the use of IRT models does not improve the Se, Sp, and predictive values of the MCID-TL compared with the MCID-Sc, except for deterioration in which its Se and predictive values seem slightly increased. For the MCID-ScBS, observed Se, Sp, and predictive values are consistently higher than for MCID-Sc or MCID-TL.

The overall lack of superiority of the MCID-TL compared with the MCID-Sc can be explained in considering Figs. 1 and 3. Indeed, in Fig. 3, it can be seen that the relationship between the GH subscale score and the TL is quasilinear for a score ranged from 20 to 80 approximately. It means that, in this score range, the scale level of the GH subscale score nearly reaches the interval scale level. Moreover, in the study sample, 965 (82.5%) patients had a BS ranged in [20–80], as it can be seen in Fig. 1. It follows that few misclassifications of individuals having experienced “at least a minimally important change” vs. “no change” over time, using the MCID-Sc, can be explained by the lack of interval scale properties of the score scale in our study. However, the magnitude of the MCID is another important factor to consider. Indeed, this magnitude is approximately five times larger for deterioration than for improvement. The slightly better MCID-TL’s performances in the case of deterioration suggested in our study could result from its magnitude because the lack of interval scale properties of the score could lead to more distortions in a large difference than in a small difference, that is, the larger the quantity measured, the larger the discrepancy observed between its measures on the score or TL scale.

The other important result of our study concerns the better results obtained with the MCID-ScBS. Further research should be done to disentangle the origins of this phenomenon and determine if it could be explained by a different perception of change depending on the baseline severity. Indeed, for example, the MCID decrease with the increasing BS observed in the case of improvement could result from the ceiling effect and the regression to the mean (RTM) phenomenon. In concrete terms, the ceiling effect is due to a lack of items able to measure a minimal clinically significant improvement for patients with an already high score at baseline. The score change observed for these patients is, therefore, lower than the change which would have been observed if there had been no ceiling effect. Although this effect is smaller than on the score scale, the use of the latent trait is also subject to floor and ceiling effects, and it might be another reason for the lack of superiority of the MCID-TL compared with the MCID-Sc [55]. The RTM phenomenon is responsible for a higher probability of negative change score for patients in the upper part of the BS distribution (statistical tendency of extreme scores to become less extreme at follow-up). In our study, the RTM could explain the negative mean change score (−4.8) observed in the subgroup of patients with a BS comprised in [67−100] in the SB group (ie, a decreasing mean score on the GH subscale from T1 to T2, whereas patients rated their health in general on the GRC at T2 as better than at T1). One of the most cited limits of the anchor-based method concerns the validity of the anchor [19,27,29,56]. In our study, the weak values of the Se, Sp, predictive values, and correlations observed between score change from T1 to T2 and the GRC raise questions about the validity of the MOS-SF36 health transition item used as an anchor. In the MOS-SF36 questionnaire, the response to this item is not used to compute the score of the other eight dimensions assessed and, consequently, of the GH subscale. This item’s face validity is obviously good to assess change on the construct supposed to be measured by the GH subscale. However, the mean change in the subgroup of patients considered as stable (health in general rated as “about the same” compared with 6 months ago) was negative on the score scale (−3.16) and TL scale (−0.19). These results raise different questions [27]: Is the construct measured by the GH subscale the same as the “health in general” referred to in the GRC? Has this GRC still the same meaning for the patients when assessing their health 6 month ahead (recall bias)? Finally, does response shift in one or several items of the GH subscale occur from T1 to T2? Further analysis should be done to clarify these issues. Another limit should be discussed concerning the heterogeneity of diseases in the cohort used in this study. The use of a more valid anchor and/or a more homogeneous clinically

Table 1. Sensitivity (Se), specificity (Sp), positive predictive value (PPV), and negative predictive value (NPV) for the minimal clinically important difference determined on the score scale (MCID-Sc), on the trait level (MCID-TL), or defined as a range of values on the score scale according to the baseline score (MCID-ScBS) of the general health subscale for people who rated their health as better (improvement) or worse (deterioration) compared with 6 months ago

<table>
<thead>
<tr>
<th>MCID determination</th>
<th>Se (95% CI), %</th>
<th>Sp (95% CI), %</th>
<th>PPV (95% CI), %</th>
<th>NPV (95% CI), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCID-Sc</td>
<td>54.6 (50.7, 58.5)</td>
<td>65.6 (60.9, 70.2)</td>
<td>71.3 (67.2, 75.3)</td>
<td>48.1 (43.9, 52.3)</td>
</tr>
<tr>
<td>MCID-ScBS</td>
<td>56.6 (52.7, 60.4)</td>
<td>68.6 (64.0, 73.1)</td>
<td>73.8 (69.8, 77.7)</td>
<td>50.3 (46.1, 54.5)</td>
</tr>
<tr>
<td>MCID-TL</td>
<td>54.6 (50.7, 58.5)</td>
<td>65.8 (61.2, 70.5)</td>
<td>71.4 (67.4, 75.5)</td>
<td>48.2 (44.0, 52.4)</td>
</tr>
<tr>
<td>Deterioration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCID-Sc</td>
<td>44.1 (35.9, 52.2)</td>
<td>65.8 (61.2, 70.5)</td>
<td>31.5 (25.1, 37.9)</td>
<td>76.7 (72.3, 81.2)</td>
</tr>
<tr>
<td>MCID-ScBS</td>
<td>53.2 (45.0, 61.3)</td>
<td>75.8 (71.6, 80.0)</td>
<td>43.9 (36.5, 51.3)</td>
<td>81.9 (78.0, 85.9)</td>
</tr>
<tr>
<td>MCID-TL</td>
<td>51.1 (42.9, 59.2)</td>
<td>63.8 (59.1, 68.5)</td>
<td>33.5 (27.2, 39.8)</td>
<td>78.5 (74.1, 83.0)</td>
</tr>
</tbody>
</table>

Abbreviation: CI, confidence interval.
defined cohort may have improved the values of the Se, Sp, PPV, and NPV for each of the MCID values calculated with the three different methods but would unlikely have favored one method over another.

To our knowledge, this work is the first one that uses IRT models to determine the MCID on the TL. These models are powerful tools that make the measurement of subjective phenomenon on an interval-level scale possible. However, our study shows that for the GH subscale of the MOS-SF36 questionnaire, the ability of a single MCID value to classify individuals as having experienced “at least a minimally important change” vs. “no change” over time is not enhanced if the MCID is determined on the TL scale compared with the MCID-Sc. Furthermore, the recommendations done by various authors concerning the use of several MCID values according to the baseline severity (MCID-Sc enlisted) are reinforced by our results [13,15,22,30,35]. Methods to determine the number of values for the MCID-Sc that leads to the highest Se and Sp for a scale should be developed. The choice of this number should obviously be balanced with the logistical challenge of a large number of values in practice, especially with separate MCID values for improvement and deterioration.

Appendix

Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jclinepi.2013.10.009.

References

