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Power and sample size determination for
group comparison of patient-reported
outcomes using polytomous Rasch models
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The analysis of patient-reported outcomes or other psychological traits can be realized using the Rasch measure-
ment model. When the objective of a study is to compare groups of individuals, it is important, before the study,
to define a sample size such that the group comparison test will attain a given power. The Raschpower procedure
(RP) allows doing so with dichotomous items. The RP is extended to polytomous items. Several computational
issues were identified, and adaptations have been proposed. The performance of this new version of RP is assessed
using simulations. This adaptation of RP allows obtaining a good estimate of the expected power of a test to com-
pare groups of patients in a large number of practical situations. A Stata module, as well as its implementation
online, is proposed to perform the RP. Two versions of the RP for polytomous items are proposed (deterministic
and stochastic versions). These two versions produce similar results in all of the tested cases. We recommend the
use of the deterministic version, when the measure is obtained using small questionnaires or items with a few
number of response categories, and the stochastic version elsewhere, so as to optimize computing time. Copyright
© 2015 John Wiley & Sons, Ltd.
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1. Introduction

The reporting of a patient’s own perception of his/her health condition has gained much attention. Hence,
endpoints such as quality of life (QoL) and other perceived health measures (pain, fatigue, and etc.) are
increasingly used as important health outcomes in clinical trials and epidemiological studies, and are
considered highly valued endpoints of medical care in different areas, for example, rheumatology, oncol-
ogy, cardiology, and surgery [1–7]. These types of endpoints are usually referred to as latent variables
or latent traits. They cannot be directly observed nor measured as other clinical or biological data, and
they are often collected through self-assessment questionnaires including either binary or polytomous
items and are termed patient-reported outcomes (PRO). The patient’s responses to the items are often
combined to provide scores that are subsequently used for analysis with the so-called classical test the-
ory (CTT) analysis. An additional possibility that has gained a great deal of interest during the past years
[8,9] is to work directly on the item responses by fitting models based on the item response theory (IRT),
in particular, the Rasch model [10] for binary items or the partial credit model (PCM) for polytomous
items [11]. These models enable to model relationships between the observed variables representing the
answers to the items and latent variables of interest (QoL, anxiety, and etc.). Many PRO instruments are
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currently found to be well adapted to IRT modeling because such models are used more and more for the
construction, validation, and reduction of questionnaires [12, 13].

Sample size determination is an issue of primary importance during the planning of a study. Indeed,
studies of inadequate size may lead to erroneous and uninformative conclusions, and may expose patients
to inappropriate medical strategies. Sample size calculations have been widely developed for many types
of endpoints, and specific methods exist for sample size determination for a number of outcomes includ-
ing quantitative, categorical, and censored data [14–16]. All of the methods used for sample size planning
and for statistical analysis are based on similar grounds. For example, the well-known sample size for-
mula for the comparison of normally distributed endpoints between two groups of patients is based on
the t-test [14]. However, for the comparison of PRO data in cross-sectional studies, it has been recently
emphasized that this sample size formula was inadequate if a Rasch model was intended to be used for
analysis. Indeed, using this formula leads to an underestimated sample size and hence poor power [17].
Some methodological developments have therefore been proposed for sample size calculations for the
comparison of PRO data in two groups of patients using the Rasch model [18]. In this approach, named
Raschpower, the expected item parameters of the PRO, the difference in the latent variables means, and
its variance, for which the derivation was approximated using Cramer–Rao (CR) bound, were all taken
into account. The approximation of this latter variance required the determination of the expected patient
responses to the binary items, that is, the 2J (where J is the number of items) possible response patterns
and their associated probabilities of occurrence computed using the Rasch model. The expected dataset
that was obtained was then used to determine the CR bound, and this approach provided adequate power
and sample size calculations for PRO including binary responses [18].

However, many PROs in health science for the most part include polytomous rather than dichotomous
items, and this paper aims at providing the necessary developments to adapt the previous methodology
to such data. One of the main issues for this extension is to take into account the huge number of possible
response patterns for which the computations are required for sample size and power determinations. Four
different strategies are proposed to handle this problem and are compared using simulations, regarding
power and sample size.

2. Methods

2.1. The latent regression-mixed partial credit model

The objective of this work is to provide power calculations for the comparison of PRO measured by
questionnaires composed of polytomous items between two groups of patients when the data are intended
to be subsequently analyzed using ordinal Rasch models such as the PCM.

In Rasch models, the latent trait can be considered a set of fixed parameters (with one parameter per
individual reflecting a measure of the underlying concept for each individual) or as a random variable.
In the latter case, we consider the sample to be representative of a more general population, and an
assumption is made for the distribution of the random variable. The parameters of this distribution are
then estimated. In general, the latent variable is assumed to be normally distributed, and we estimate the
mean and the variance of this distribution. In this approach, the analysis is performed at the population
level but not at an individual level, and covariates can be added to characterize the individuals in the
population. For example, in clinical research, the treatment received by the patients allows for the ability
to distinguish between groups of patients. In each group, the mean and variance of the latent trait can be
estimated, and the groups can be compared using the means.

A well-known model of the Rasch family for polytomous items is the PCM [11]. This model is quite
similar to the adjacent category logit model used to model ordinal data. The main difference is that
the latent trait is introduced as a random variable among the covariates. In the PCM, the probability of
answering the hth response category (h = 0,… ,K) of the jth item Xj (j = 1,… , J) with K + 1 response
categories is modeled as

P
(
Xj = h|𝜃; 𝛿j

)
=

exp
(

h𝜃 −
∑h

l=1 𝛿jl

)
1 +

∑K
r=1 exp

(
r𝜃 −

∑r
l=1 𝛿jl

) , (1)

with 𝜃 as a specific value of the latent trait distributed according to a normal distribution with means𝜇0 and
𝜇1, and variances 𝜎2

0 and 𝜎2
1 (for the two groups indexed by 0 and 1, respectively). 𝛿j = (𝛿j1 … 𝛿jr … 𝛿jmj

)
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is a vector of parameters defining the difficulties of the jth item having mj + 1 answer categories. This
principle of latent regression can be adapted to others models of the IRT [19–21].

The main criterion is the group parameter defined as the difference between the two means denoted as
𝛾 = 𝜇1 − 𝜇0. It is typical to compare the group parameter with 0 using a Wald test. Because a constraint
must be defined to identify the model, let 𝜇 = 0 with 𝜇 the mean between 𝜇0 and 𝜇1; each of them
weighted by the sample sizes N0 and N1 in each group. Consequently,{

N0𝜇0 + N1𝜇1 = 0
𝛾 = 𝜇1 − 𝜇0

⇔

{
𝜇0 = − N1𝛾

N0+N1

𝜇1 = N0𝛾

N0+N1
.

In the particular case in which the two groups are of equal size (N0 = N1), we obtain 𝜇0 = −𝛾∕2 and
𝜇1 = 𝛾∕2. The hypotheses tested by the Wald test can be written as H0 ∶ 𝛾 = 0 and H1 ∶ 𝛾 ≠ 0.

The parameters of the model can be estimated using marginal maximum likelihood by maximizing
the quantity

lM(𝛿, 𝜇0, 𝜇1, 𝜎
2
0 , 𝜎

2
1 |x) = N0+N1∏

n=1
∫

+∞

−∞

J∏
j=1

P(Xnj = xnj|𝜃n; 𝛿j)G(𝜃|𝜇0, 𝜇1, 𝜎
2
0 , 𝜎

2
1)d𝜃, (2)

with G(.) as the density function of the normal distribution and 𝛿 as a vector of all item parameters
𝛿jl, j = 1,… , J and l = 1,… ,K, and x the set of responses of the N0 + N1 individuals to the J items.
Let Γ be the estimator of 𝛾 , which is the difference between the estimates of 𝜇0 and 𝜇1 [22]. The statistic
of the Wald test is defined by Γ∕

√
Var(Γ) and follows, under the H0 hypothesis, a standardized normal

distribution for a large sample size.

2.2. Estimation of the power using Cramer–Rao bound: the Raschpower procedure

During the planning step, a sample size is determined to detect a relevant clinical difference between
groups, 𝛾 , with a power 1 − 𝛽 at a given 𝛼 level. The assumptions needed to compute this sample size
include the pre-specification of the values of the item parameters, 𝛿, and the variances of the latent trait
𝜎2

0 and 𝜎2
1 , which are a priori set to the so-called planned values (expected values of these parameters

can be obtained from previous studies for example). The standard error of 𝛾 is also needed and requires
additional assumptions regarding the pattern of patient’s responses to the items. The main difficulty is
related to the approximation of the standard error of the 𝛾 estimate. Indeed, this estimation requires a
dataset of the answers of the individuals to the items, but during the planning step, this dataset is, by
definition, unavailable. An expected dataset is therefore created to avoid this difficulty. By analogy with
[18], it is approximated at the planning step using a theoretical dataset created using the expected values
of the parameters (𝛿, 𝜎2

0 , 𝜎2
1 and 𝛾) as well as the model that will be used to analyze the data, the PCM.

To do so, all of the possible response patterns are created, and for each of them, two probabilities are
computed, 𝜋0(x) and 𝜋1(x), corresponding to the probability of observing the response pattern x for an
individual of the first group and the second group, respectively. These two probabilities are approximated
using the PCM. Using the local independence property, these probabilities can be written as

𝜋g(𝐱) = ∫
+∞

−∞

J∏
j=1

P(Xj = xj|𝜃; 𝛅𝐣)G(𝜃|𝜇g, 𝜎
2
g)d𝜃 ∀g = {0, 1}, (3)

with G(𝜃|𝜇g, 𝜎
2
g) as the normal density function with mean 𝜇g and variance 𝜎2

g . Each of these values (for
each group g = {0, 1} and for each possible KJ response patterns) can be computed using Gauss–Hermite
quadratures (GM method).

For each response pattern, the expected number of associated individuals per group is computed as
ng,x = f loor(ng × 𝜋g(x)), where ng is the number of individuals of group g, and f loor(x) is a function
such that f loor(x) = n if n ⩽ x < n + 1 with n an integer. As each number is rounded to the closest
smaller integer, the assigned number of individuals among all of the possible response patterns is less
than the expected number in each group (ng, g = {0, 1}). To allocate the ng individuals in each group,
the results are incremented by 1 for the patterns having, after this first assignment, the greatest values
ng × 𝜋g(x) − ng,x until obtaining

∑
x ng,x = ng for each group (g = {0, 1}).

This procedure (named GH) is similar to the one proposed in [18] for dichotomous items, but it is faced
with the problem of the huge number of possible response patterns that can be obtained with polytomous
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items. Indeed, if the scale is composed of J items with K response categories, the number of possible
responses is KJ; a number that can become very large. For example, for 10 items with seven responses
categories, the number of response patterns, 710, is close to 300 million. This creates computational issues
because it is not easy to handle several million data; furthermore, the computing time can become very
large to approximate all of the values 𝜋g(x) by GH method.

Three adaptations of the GH method are proposed to reduce computing time:

• Mean method: The quantity 𝜋g(x) is approximated by using only the mean of 𝜃 (and not the entire
distribution), such as

�̂�g(𝐱) =
J∏

j=1

P(Xj = xj|𝜃g = 𝜇g, 𝛅𝐣) ∀g = {0, 1}. (4)

• Mean + GH method: All of the 𝜋g(x) are approximated by the mean method, and then these quantities
are approximated by the GH method only for the Pg response patterns having the greatest values for
�̂�g(x). We propose to use Pg = 2 × ng.

• Population + GH method: A large dataset with T individuals is simulated using a PCM, and then
the 𝜋g(x) are approximated by GH method only for the most frequent Pg response patterns in this
simulated dataset. We propose to use T = 1, 000, 000 and Pg = 2 × ng.

When each studied response pattern x is associated with a frequency ng,x, an expected dataset is created
and analyzed by a latent regression-mixed partial credit model [23] with a random effect for the latent
trait. Variances of the latent trait and difficulty parameters of the items are set to their planned values.
The difference 𝛾 between the two mean values of the latent trait in each group (𝛾 = 𝜇1 −𝜇0) is estimated,
and its variance (var(�̂�)) is approximated using the CR Bound. Finally, the power of the test based on this
estimation of the CR bound is approximated at

1 − 𝛽CR ≈ 1 − Φ

(
z1−𝛼∕2 −

|𝛾|√
var(�̂�)

)
, (5)

with Φ(.) as the cumulative standard normal distribution function.

2.3. Estimation of the power using simulated datasets

The estimation of the power based on the CR bound (1 − 𝛽CR) is compared with the estimation obtained
using simulated datasets (1 − 𝛽S). A large number of datasets were created using the expected values of
the parameters defined in the planning step as simulation parameters. The latent trait was then simulated
using draws from a normal distribution, with the planned values for the mean 𝜇g, variance 𝜎2

g for an
individual of the group g and with Ng individuals for group g, g = {0, 1}. For each individual, it was
possible to obtain the probabilities of having a given response for each item using the item response
functions of the PCM (equation 1).

One thousand replications of each of the 90 cases (defined for given values for J = {5, 10}, N0 = N1 =
{50, 100, 200, 300, 500}, K = {3, 5, 7}, 𝛾 = {0.2, 0.5, 0.8}, and 𝜎2

1 = 𝜎2
2 = 1) have been performed. Note

that the Raschpower procedure runs with an odd or an even number of response categories K, but for the
simulations, to explore the range of values between 3 and 7, only odd numbers have been used. Difficulty
parameters are drawn in the [−2; 2] interval with different values according to the number of items (J)
and the number of response categories (K), with 𝛿j1 < 𝛿j2 < · · · < 𝛿jK , ∀j = 1,… , J. For each simulated
dataset, the 𝛾 parameter is estimated with its variance; a Wald test of the null hypothesis H0 ∶ 𝛾 = 0
against H1 ∶ 𝛾 ≠ 0 is realized. The power estimated from the simulation study (1 − 𝛽S) is defined for
each case as the rate of significant Wald tests under H1.

Because, in practice, the variance of the latent trait is rarely fixed when analyzing data using a
Rasch model and because the difficulty parameters are sometimes unknown; three cases were considered
for simulations:

• In the first case (S1), the variance of the latent trait and the difficulty parameters were considered
known to be comparable with the assumptions of the Raschpower procedure;

• In the second case (S2), difficulty parameters were considered known, but the variance of the latent
trait was estimated jointly with the group effect;

• In the third case (S3), difficulty parameters and variance of the latent trait were estimated jointly
with the group effect.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 2444–2455
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2.4. The Raschpower Stata and online modules

The Raschpower procedure based on the CR bound can be performed using the Raschpower Stata mod-
ule, which can be downloaded from http://raschpower.anaqol.org. This module is also implemented
online on the website PRO-online (http://pro-online.univ-nantes.fr/). Consequently, it is possible to use
the procedure independently from the usual statistical software of the user.

The general syntax of this Stata module is as follows:
raschpower [, Difficulties(matrix) n0(integer) n1(integer) Gamma(real) Var(string) Method(string)

NBPatterns(integer) EXPectedpower(real)].
A matrix of the difficulty parameters must be previously defined. This matrix will have as many

columns as items and as many rows as response categories to each item and will contain each of the
difficulty parameters. Such a matrix must be presented as follows:

⎛⎜⎜⎜⎝
𝛿11 ... 𝛿j1 ... 𝛿J1
𝛿12 ... 𝛿j2 ... 𝛿J2
... ... ... ... ...

𝛿1K ... 𝛿jK ... 𝛿JK

⎞⎟⎟⎟⎠
• n1 and n0 are the size of the two groups (by default, 100 for each group).
• gamma is the minimal clinically important difference (MCID) or the expected value of the difference

between the means of two groups on the latent trait .
• var is the expected values of the variances of the latent trait (1 by default): If this option contains

only one value, variances are considered to be equal between the two different groups; if this option
contains two values, variances are considered to be unequal between the two groups.

• method allows defining the method used by the algorithm (GH, mean, mean + GH, or popula-
tion + GH). By default, the method is set at GH when there is a moderate number of possible response
patterns (< 1000 per group) and at population + GH otherwise.

• nbpatterns allows for defining the number of response patterns for which the probability of occur-
rence will be estimated using GM method in the mean + GH and population + GH methods. The
number of response patterns that will be analyzed for each group is defined as the number of
individuals in the corresponding group multiplied by nbpatterns. By default, nbpatterns is set at 2.

• expectedpower allows for searching for a sample size to reach a fixed level of power (the obtained
sample sizes take into account the ratio between n0 and n1).

An example of syntax is given in the succeeding paragraphs; it was used in the data example section of
the paper:

. matrix diff=(-0.328,-0.811,0.329\0.556,0.818,1.409\1.394,1.049,1.288\0.560,
0.363,0.950)

. Raschpower, d(diff) n0(167) n1(205) gamma(0.178) var(0.77) exp(0.8)

Number of individuals in the first group: 167
Number of individuals in the second group: 205
Group effect: .178
Variance of the latent trait in the first group: .77
Variance of the latent trait in the second group: .77
Number of items: 4
Difficulty parameters of the items:

item1 item2 item3 item4
delta_1 -.328 .556 1.394 .56
delta_2 -.811 .818 1.049 .363
delta_3 .329 1.409 1.288 .95

10%..20%..30%..40%..50%..60%..70%..80%..90%..100%

-----------------------------------------------------------------
Estimation of the variance of the group effect 0.0125
Estimation of the power 0.3572
-----------------------------------------------------------------
Number of patients for a power of 80.00% 517.17/ 634.85

The Raschpower module can be installed from Stata by using the ssc install raschpower command.
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Table I. Estimated values of variance of the 𝛾 parameter (Var(�̂�)) and power (1 − 𝛽) obtained with
population + Gauss–Hermite methods or using simulated datasets (S1 is the case where the variance of
the latent trait and the difficulty parameters are fixed; S2 if the case where only the difficulty parameters
are fixed but the variance of the latent trait is estimated; S3 is the case where the variance of the latent
trait and the difficulty parameters are estimated) for a set of items containing three response categories,
as a function of the sample size per group (N), the number of items (J), and the difference of the means
between the two groups (𝛾).

N J 𝛾 VarPOP(�̂�) 1 − 𝛽POP VarS1(�̂�) 1 − 𝛽S1 VarS2(�̂�) 1 − 𝛽S2 VarS3(�̂�) 1 − 𝛽S3

50 5 0.2 0.0598 0.127 0.0596 0.132 0.0598 0.138 0.0615 0.140
0.5 0.0603 0.531 0.0598 0.532 0.0596 0.562 0.0627 0.562
0.8 0.0606 0.902 0.0603 0.899 0.0608 0.898 0.0653 0.898

10 0.2 0.0543 0.135 0.0500 0.129 0.0498 0.172 — —
0.5 0.0552 0.567 0.0501 0.618 0.0497 0.570 — —
0.8 0.0573 0.950 0.0503 0.946 0.0500 0.948 — —

100 5 0.2 0.0299 0.211 0.0298 0.217 0.0298 0.180 0.0307 0.180
0.5 0.0300 0.823 0.0299 0.844 0.0302 0.836 0.0314 0.836
0.8 0.0302 0.996 0.0301 0.998 0.0302 0.998 0.0320 0.998

10 0.2 0.0265 0.232 0.0250 0.254 0.0249 0.264 — —
0.5 0.0269 0.862 0.0250 0.865 0.0251 0.918 — —
0.8 0.0273 0.998 0.0252 0.999 0.0251 1.000 — —

200 5 0.2 0.0149 0.374 0.0149 0.388 0.0149 0.406 0.0150 0.406
0.5 0.0150 0.983 0.0149 0.985 0.0151 0.980 0.0154 0.980
0.8 0.0151 1.000 0.0151 1.000 0.0152 1.000 0.0159 1.000

10 0.2 0.0130 0.418 0.0125 0.420 0.0126 0.464 — —
0.5 0.0131 0.992 0.0125 0.993 0.0124 0.988 — —
0.8 0.0133 1.000 0.0126 1.000 0.0126 1.000 — —

300 5 0.2 0.0099 0.519 0.0099 0.514 0.0099 0.504 0.0100 0.506
0.5 0.0100 0.999 0.0100 0.999 0.0100 1.000 0.0102 1.000
0.8 0.0100 1.000 0.0100 1.000 0.0102 1.000 0.0107 1.000

10 0.2 0.0086 0.578 0.0083 0.609 0.0083 0.586 — —
0.5 0.0087 1.000 0.0083 1.000 0.0084 1.000 — —
0.8 0.0087 1.000 0.0084 1.000 0.0084 1.000 — —

500 5 0.2 0.0060 0.736 0.0060 0.744 0.0060 0.758 0.0060 0.758
0.5 0.0060 1.000 0.0060 1.000 0.0060 1.000 0.0061 1.000
0.8 0.0060 1.000 0.0060 1.000 0.0061 1.000 0.0063 1.000

10 0.2 0.0051 0.799 0.0050 0.782 0.0050 0.788 — —
0.5 0.0051 1.000 0.0050 1.000 0.0050 1.000 — —
0.8 0.0052 1.000 0.0050 1.000 0.0051 1.000 — —

3. Results

Tables I, II, and III present the variances and the power obtained using the GH and population + GH
method and for the simulated datasets (three designs S1, S2, and S3) as a function of the number of
individuals per group (N), number of items (J) and differences between the two means (𝛾) for items
having K = 3, 5, or 7 response categories, respectively. The results of the mean and mean + GH methods
are not presented here because they produced more differences with the simulation study (considered
as the reference) than the population + GH method and displayed a larger computation time. GH and
population + GH methods produce similar results with J = 5 whatever the values of the other parameters.
However, the GH method could be very long to run as soon as the number of items, and the number
of response categories per item were large. As a consequence, the results for the GH method are not
presented in the tables for J = 10. Finally, for computing time issues, simulations with J = 10 and
S3 simulation design (variance of the latent trait and difficulty parameters jointly estimated) have not
been performed.

The values of VarPOP(�̂�) and VarS(�̂�) (whatever the design S1, S2, or S3) follow expected trends. The
values decrease with N, J, and K and are stable whatever the value of 𝛾 . Consequently, the power follows
similar trends. It increases with N, J, K, and only slightly with 𝛾 .

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 2444–2455
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Table II. Estimated values of variance of the 𝛾 parameter (Var(�̂�)) and power (1 − 𝛽) obtained with
population + Gauss–Hermite methods or using simulated datasets (S1 is the case where the variance of
the latent trait and the difficulty parameters are fixed; S2 if the case where only the difficulty parameters
are fixed but the variance of the latent trait is estimated; S3 is the case where the variance of the latent
trait and the difficulty parameters are estimated) for a set of items containing five response categories,
as a function of the sample size per group (N), the number of items (J), and the difference of the means
between the two groups (𝛾).

N J 𝛾 VarPOP(�̂�) 1 − 𝛽POP VarS1(�̂�) 1 − 𝛽S1 VarS2(�̂�) 1 − 𝛽S2 VarS3(�̂�) 1 − 𝛽S3

50 5 0.2 0.0509 0.142 0.0492 0.153 0.0495 0.148 0.0521 0.146
0.5 0.0512 0.598 0.0494 0.631 0.0498 0.632 0.0532 0.634
0.8 0.0524 0.937 0.0497 0.946 0.0504 0.950 0.0562 0.946

10 0.2 0.0508 0.142 0.0448 0.150 0.0448 0.138 — —
0.5 0.0523 0.590 0.0449 0.679 0.0441 0.636 — —
0.8 0.0550 0.962 0.0451 0.962 0.0449 0.954 — —

100 5 0.2 0.0250 0.244 0.0246 0.231 0.0245 0.232 0.0252 0.232
0.5 0.0252 0.883 0.0247 0.887 0.0247 0.900 0.0260 0.900
0.8 0.0254 0.999 0.0248 0.999 0.0249 0.998 0.0272 0.998

10 0.2 0.0248 0.245 0.0224 0.314 0.0224 0.252 — —
0.5 0.0255 0.880 0.0224 0.892 0.0224 0.926 — —
0.8 0.0262 0.999 0.0225 1.000 0.0228 0.998 — —

200 5 0.2 0.0124 0.435 0.0123 0.449 0.0122 0.428 0.0124 0.430
0.5 0.0124 0.994 0.0123 0.995 0.0123 0.995 0.0128 0.995
0.8 0.0125 1.000 0.0124 1.000 0.0125 1.000 0.0135 1.000

10 0.2 0.0122 0.441 0.0112 0.470 0.0113 0.498 — —
0.5 0.0124 0.994 0.0112 0.999 0.0112 1.000 — —
0.8 0.0126 1.000 0.0113 1.000 0.0113 1.000 — —

300 5 0.2 0.0082 0.597 0.0075 0.592 0.0082 0.620 0.0083 0.618
0.5 0.0083 1.000 0.0082 1.000 0.0082 1.000 0.0085 1.000
0.8 0.0083 1.000 0.0083 1.000 0.0084 1.000 0.0090 1.000

10 0.2 0.0081 0.606 0.0075 0.635 0.0075 0.632 — —
0.5 0.0082 1.000 0.0075 1.000 0.0075 1.000 — —
0.8 0.0083 1.000 0.0075 1.000 0.0076 1.000 — —

500 5 0.2 0.0049 0.813 0.0049 0.803 0.0049 0.832 0.0050 0.832
0.5 0.0049 1.000 0.0049 1.000 0.0049 1.000 0.0051 1.000
0.8 0.0050 1.000 0.0050 1.000 0.0050 1.000 0.0054 1.000

10 0.2 0.0048 0.824 0.0045 0.850 0.0045 0.846 — —
0.5 0.0048 1.000 0.0045 1.000 0.0045 1.000 — —
0.8 0.0049 1.000 0.0045 1.000 0.0045 1.000 — —

The population + GH method sometimes produces overestimated values of Var(�̂�) compared with
simulations, in particular for small sample sizes (N = 50 or 100), a large number of items (J = 10),
and large numbers of response categories (K = 5 or 7). For example, the overestimation of VarPOP(�̂�)
compared with the variance obtained by simulations VarSs

(�̂�), s = 1, 2, 3 is approximately 0.0080 for
N = 50, J = 10, and K = 7 (whatever the value of 𝛾) versus an overestimation of only 0.0005 for
N = 500, J = 10, and K = 7.

As a consequence of the overestimation of VarSs
(�̂�), s = 1, 2, 3, the power estimated with the popu-

lation + GH method can be underestimated compared with the power obtained with the simulations (S1
design). This underestimation can reach 0.089 in the worst case (for N = 50, J = 10, 𝛾 = 0.5, and
K = 5); nevertheless, it is only 0.010 on average. We note that the underestimation of the power is mainly
related to scenarios with a small sample size (N = 50) and a large number of possible responses patterns
(when J = 10), especially when the power has a medium value (between 0.3 and 0.7).

Compared with the S1 design, the S2 and S3 designs (variance of the latent trait and difficulty param-
eters jointly estimated with the group effect) tend to produce somewhat larger estimations than VarS1(�̂�),
but this effect seems to be relatively negligible on the corresponding powers, which remain close to
one another.
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Table III. Estimated values of variance of the 𝛾 parameter (Var(�̂�)) and power (1 − 𝛽) obtained with
population + GH methods or using simulated datasets (S1 is the case where the variance of the latent trait
and the difficulty parameters are fixed; S2 if the case where only the difficulty parameters are fixed but
the variance of the latent trait is estimated; S3 is the case where the variance of the latent trait and the
difficulty parameters are estimated) for a set of items containing seven response categories, as a function
of the sample size per group (N), the number of items (J), and the difference of the means between the
two groups (𝛾).

N J 𝛾 VarPOP(�̂�) 1 − 𝛽POP VarS1(�̂�) 1 − 𝛽S1 VarS2(�̂�) 1 − 𝛽S2 VarS3(�̂�) 1 − 𝛽S3

50 5 0.2 0.0498 0.144 0.0462 0.137 0.0466 0.154 0.0495 0.152
0.5 0.0503 0.606 0.0464 0.636 0.0463 0.642 0.0500 0.640
0.8 0.0508 0.944 0.0467 0.963 0.0471 0.966 0.0536 0.0962

10 0.2 0.0511 0.141 0.0433 0.175 0.0429 0.162 — —
0.5 0.0530 0.584 0.0433 0.654 0.0434 0.670 — —
0.8 0.0549 0.927 0.0435 0.957 0.0435 0.972 — —

100 5 0.2 0.0243 0.250 0.0231 0.252 0.0232 0.250 0.0240 0.250
0.5 0.0243 0.894 0.0232 0.898 0.0233 0.918 0.0247 0.916
0.8 0.0247 0.999 0.0234 1.000 0.0234 0.994 0.0256 0.994

10 0.2 0.0249 0.244 0.0216 0.271 0.0215 0.242 — —
0.5 0.0256 0.878 0.0217 0.897 0.0216 0.920 — —
0.8 0.0263 0.999 0.0218 0.999 0.0218 1.000 — —

200 5 0.2 0.0119 0.451 0.0116 0.471 0.0116 0.478 0.0119 0.476
0.5 0.0119 0.996 0.0116 0.998 0.0116 0.996 0.0121 0.996
0.8 0.0120 1.000 0.0117 1.000 0.0117 1.000 0.0128 1.000

10 0.2 0.0122 0.442 0.0108 0.495 0.0108 0.466 — —
0.5 0.0125 0.994 0.0108 0.999 0.0109 0.994 — —
0.8 0.0127 1.000 0.0109 1.000 0.0108 1.000 — —

300 5 0.2 0.0078 0.618 0.0077 0.619 0.0077 0.666 0.0078 0.668
0.5 0.0079 1.000 0.0077 1.000 0.0078 1.000 0.0081 1.000
0.8 0.0079 1.000 0.0078 1.000 0.0078 1.000 0.0084 1.000

10 0.2 0.0080 0.610 0.0072 0.646 0.0072 0.644 — —
0.5 0.0082 1.000 0.0072 1.000 0.0072 1.000 — —
0.8 0.0083 1.000 0.0073 1.000 0.0073 1.000 — —

500 5 0.2 0.0047 0.833 0.0046 0.837 0.0046 0.836 0.047 0.836
0.5 0.0047 1.000 0.0046 1.000 0.0047 1.000 0.048 1.000
0.8 0.0047 1.000 0.0047 1.000 0.0047 1.000 0.051 1.000

10 0.2 0.0047 0.830 0.0043 0.855 0.0043 0.860 — —
0.5 0.0048 1.000 0.0043 1.000 0.0043 1.000 — —
0.8 0.0049 1.000 0.0044 1.000 0.0044 1.000 — —

4. Example of determination of the power to compare two groups of
pathological gamblers

To illustrate this approach in the epidemiological research, we use data related to a cohort of 628 gamblers.
In this cohort, gamblers are recruited in gambling places or by press. Problematic gamblers are defined as
those obtaining more than three criteria from the gambling section of the DSM – Fourth Edition. In this
cohort, 372 gamblers are considered problematic. Among these problematic gamblers, 167 seek a treat-
ment for this addiction, and 205 are not treatment seeking. At the baseline, the gamblers of this cohort
respond to several questionnaires and in particular to the Gambling Attitudes and Beliefs Survey [24].
This questionnaire is composed of 35 items having four response categories (‘strongly agree’, ‘agree’,
‘disagree’, ‘strongly disagree’) and explores gambling-related dysfunctional beliefs. In this question-
naire, four items allow computing a score based on dysfunctional beliefs about luck [25] (items 8 ‘Some
people are unlucky’, 12 ‘Some people are lucky to have around when I’m gambling’, 20 ‘I have carried
a lucky charm when I gambled’, and 29 ‘Some people can bring bad luck to other people’). An assump-
tion is that treatment for gambling addiction allows reducing these dysfunctional beliefs, in particular
the one related to the impact of luck on gambling. The four items corresponding to these dysfunctional
belief dimensions follow, in this sample, a PCM (p = 0.96, goodness of fit Glas’ R1m test [26]).

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 2444–2455
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A PCM includes a group variable to distinguish problematic gamblers seeking a treatment from the
others was fitted. The group effect was estimated at 0.178, which is the difference between the means of
these two groups (p = 0.119). Because the variance of the latent trait is estimated at 0.77, the standardized
difference in the latent trait scale (0.178∕

√
0.77 ≈ 0.20) between the two groups can be considered small

[27]. Nevertheless, this difference corresponded to an average difference of 2.0 on the score scale, and this
difference has been considered clinically relevant by psychiatrists. Because the test of the comparison of
the two groups is not significant, it is interesting to evaluate its power. The matrix of estimated difficulty
parameters is the following:

⎛⎜⎜⎝
−0.328 0.556 1.394 0.560
−0.811 0.818 1.049 0.363

0.329 1.409 1.288 0.950

⎞⎟⎟⎠
Under these conditions, the Raschpower Stata module evaluates the power of the test at 35.7%. To

attain a power of 80%, the required sample size would be 582 patients per group (or 518 and 635 patients
in the first and second group, respectively, to take into account the ratio between problematic gamblers
with treatment and problematic gamblers without treatment).

5. Discussion

The Raschpower procedure was initially developed for dichotomous items. It allows for estimating the
power of a Wald test to compare the difference of the means of two groups of patients on a latent variable
measured by a Rasch model. This method consists in defining a planning dataset built from the probability
of observing each response pattern using GM method. From this planning dataset, the difference between
the means of the two groups is estimated with its variance, and the power of the test can then be evaluated.

In this paper, this method has been adapted to polytomous items, which are more often encountered in
clinical research. For a small number of possible response patterns (up to several thousand), no adapta-
tion is necessary. It is possible to estimate the probabilities of each response pattern using GM method;
consequently, a planning dataset can be obtained. However, when the number of items and response
categories for each item increases, the number of possible response patterns becomes very large (up to
several hundred million); it is not possible in this case to estimate the probability of observing each of
them. Hence, for such a situation, we propose the population + GH method. This method is based on the
simulation of one million individuals, and the probabilities associated with the most frequently observed
responses patterns are estimated.

In the present paper, results obtained by the GH and population + GH methods are compared with
results obtained by a simulation study in some practical situations: five or 10 items, with three, five, or
seven response categories; samples of 50 to 500 individuals per group; and for various values of the dif-
ference between the means of the two groups (0.2, 0.5, or 0.8) with three designs of analysis for the
simulated dataset corresponding to the fact that the variance of the latent trait was either fixed (S1) or not
(S2 and S3) and that the difficulty parameters were either fixed (S1 and S2) or not (S3). In all of these
cases, the population + GH method allows for estimating the power with an acceptable precision com-
pared with the simulations (on average, a difference of 0.010 is observed with a weak quasi-systematic
underestimation of the power for the population + GH method compared with the following simulations:
85 cases among the 90 tested with S1, 81 cases among 90 tested with S2, with a maximum difference
estimated at 0.089).

Compared with the simulations, GH has the advantage of being a deterministic method and is also faster
when the number of possible responses patterns is moderate. Population + GH is a useful alternative to GH
when the number of possible response patterns becomes very large (it avoids estimating the probability
of each of them). Even if population + GH is not strictly a deterministic method, its results seem to be
very stable if the population size is very large compared with the expected samples; in the present paper,
a population of one million individuals has been used for samples of 50 to 500 individuals per group.

The main advantage of GH and its alternative population + GH method is the ability to obtain a reli-
able approximation of the power of a Wald test to compare the means of two groups on a latent variable
measured by a Rasch family model. Empirically, it can be demonstrated that the population + GH method
runs faster than GH when the number of possible response patterns per group is approximately greater
than 1000. Consequently, we can recommend using the population + GH method when the scale is
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composed of more than 10 dichotomous items or six items with three response categories, four items
with five response categories, or when the number of response categories is greater than five.

Such an estimation of the power is very useful during the planning step of clinical or epidemiological
studies, to define a required sample size in a large number of situations often encountered in practice or
during the analysis of a dataset to determine the post hoc power of a test (especially if the result is not
significant). In this latter case, all of the required parameters are available (difficulty parameters, means
of the latent variable in the two groups, and variance of the latent variable), and it is easy to obtain the
estimation of the post hoc power. When planning a study, expected values of these parameters must be
defined, using pilot studies or assumptions; misspecifications of these values can create a poor estimation
of the power and consequently either an overestimation or an underestimation of the corresponding sam-
ple size. The impact of the misspecification of the parameters in the planning step should be investigated.
For example, difficulty parameters can be estimated from pilot studies, but such estimations can have
poor reliability and consequently may lead to improper values. However, a small impact of a weak or
medium misspecification of difficulty parameters has been demonstrated on power for the comparison of
two groups of patients with a Rasch model on power [17]. We might expect similar results with the PCM,
but it has to be investigated. Moreover, the impact of critical situations (in terms of the distribution of the
item difficulty) on the results of the Raschpower procedure has been investigated [28] and has exhibited
a good robustness for the Raschpower procedure to the specific distribution of the difficulty parameters.

An additional misspecification could be considered for the assumed value of the variance of the latent
trait. It can be difficult to obtain a reliable estimation of this parameter from pilot studies. We may suspect
an important impact of this misspecification: For example, in our cohort of gamblers, the standard error
of the estimation of the variance parameter is 0.13, and consequently, the 95% confidence interval of the
variance parameter is [0.47; 1.03]. Using these two bounds of the confidence interval, the power of the
test varied between 29.6% and 46.9% (estimated with Raschpower), and in terms of the required sample
size for an expected power of 80%, we obtain a number between 414 and 722 gamblers per group. The
uncertainty in the variance estimation may lead to a substantial difference in sample size estimation in
the context of clinical or epidemiological research.

We note that the power computed using the Raschpower algorithm is based on the idea that the variance
of the latent trait (and the difficulty parameters) are considered known parameters and are not estimated
using a dataset. This idea is similar to the classical approaches to determine power and sample size using
manifest variables [14]. S2 and S3 designs for the simulation study allow being closer to a practical
situation, by relaxing these assumptions on the variance of the latent trait and on the difficulty parameters.
These designs generally produce a small increase in the variance of the 𝛾 estimator, but this increase has
a negligible impact on the estimation of power. This result is close to [29] for manifest variables, with a
negligible impact of the estimation of the variance on power as soon as the variance was estimated with
an important number of degrees of freedom (variation of the required sample size was lesser than 4% for
a variance estimated with 100 degrees of freedom for example).

Finally, the average difference between the two groups (𝛾) can be considered in two ways, according
to the step at which the power is computed. In the planning step, it is recommended to use the MCID
if it is available. As a consequence, there is no ‘misspecification’ of this parameter because its value is
independent of the sample and only relies on the measure (that is to say, provided by the questionnaire).
Nevertheless, it could be difficult to define it on the latent trait [30] because a latent trait is more difficult to
conceptualize for a physician (or other users of such methods) than a manifest variable. When analyzing
data, the observed difference between the two means is often used instead of the MCID to compute power
(this is the case in our illustration). In this case, we can suspect misspecifications for this parameter. For
example, in our dataset, the 95% confidence interval of the difference between means is [−0.046; 0.402].
With these two bounds, the power of the test varied from 6.1% to 94.8%.

However, the impact of making wrong assumptions regarding the expected model on sample size and
power determination is also of interest. For example, the violation of some assumptions of the IRT model
could be investigated, such as non-normality of the latent variable, non-respect of the local independence
or of the unidimensionality. Indeed, in theory, these properties should be investigated during the valida-
tion of the scales, but in practice, the violation of some of these assumptions is possible. In dichotomous
situations, non-respect of the normality assumption of the latent trait and non-respect of the local indepen-
dence have been investigated [31, 32]; this allows the conclusion of a negligible impact of the violation
of these assumptions, but these investigations should be extended to the polytomous case.

Extending the proposed approach to other designs often used with PRO data, such as longitudinal
studies, would also be worthwhile. Longitudinal IRT models could be used for this purpose to provide
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valid sample size methodology for testing a time effect in the case of a one-sample design (as realized
by [33]), or a group effect in the case of a two-sample design). The latter case should be studied in
future research.

As a conclusion, the proposed approach for polytomous Rasch models is based on a numerical
approach to estimate the standard error of the group effect and produces satisfying results to evaluate
the power of a group comparison test in this framework. Nevertheless, this procedure could be improved
in terms of computation time by using analytical approaches based on the property of sufficiency of the
score for the latent trait of the Rasch models, as proposed by [34].
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