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Abstract. The partial credit and rating scale models are classical models from
item response theory; they belong to the generalized linear latent and mixed model
family and allow one to analyze questionnaires such as patient-reported outcomes.
Few goodness-of-fit testing procedures have been proposed for such models, and
few computer programs implement such tests. Here we describe two tests: the
R1m test (which tests the overall adequacy of the model to the data) and the Si
test (which evaluates the contribution of each item to a possible lack of fit). We
also propose two commands: pcmodel, which implements partial credit or rating
scale models, and pcmtest, which tests the adequacy of such models to the data.
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1 Introduction

Several scientific studies investigate phenomena such as intelligence, anxiety, quality
of life, or welfare. Such phenomena, not directly observed or measured, are called
latent variables. Usually, latent variables are indirectly investigated using questionnaires
including different items called patient-reported outcomes.

Item response theory (IRT) provides a conceptual framework suitable for modeling
such data (Lord and Novick 1968). With IRT, the observed item responses are modeled
based on the unobservable respondent characteristics (that is, the latent variables of
interest) and the item characteristics.

One of the most famous IRT models is the Rasch model (Rasch 1960). With this
model, which is suitable for only dichotomous items, items are characterized only by
their difficulty, defined as the latent trait of an individual having exactly the same
probability of responding to each of the two proposed answers to the item. Extensions
have been proposed for dealing with polytomous items with ordered response categories
(0, 1, . . ., mj for each item j), such as the rating scale model (RSM: Andrich [1978]) and
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the partial credit model (PCM: Masters [1982]). A PCM can be used even if the number
of response categories differs depending on the items. In contrast, an RSM can be used
only if the number of response categories are equal for all the items and if one may
assume that the differences in the step difficulties for the different response categories
are the same for all the items. With these two Rasch-family models, respondents are
characterized by their latent trait (that is, the individual value of the latent variable
of interest); the items are characterized by the difficulties associated with each of their
response categories.

Such IRT models are particularly suitable for performing population-based measure-
ments of latent traits and for studying the effect of associated covariates on these latent
variables. These models consist in mixed models: the latent trait is considered a random
variable, and the item difficulties (and the potentially included covariates) are consid-
ered fixed effects. Parameters are then classically estimated using marginal maximum
likelihood (MML) (Thissen 1982; Hamel et al. 2012).

There are several limitations of such models. The magnitude order of latent variables
(or covariates associated with such latent variables) remains unknown. Thus interpret-
ing numerical estimations for such variables remains a challenge. Moreover (and as is
the case for any statistical model), using such models requires the ability to test their fit
to the analyzed data. Few goodness-of-fit testing procedures have been proposed in the
literature for fitting the PCM or RSM with the MML procedure. Glas and Verhelst (1995)
proposed three tests, all asymptotically distributed as chi-squares: the R1m test (which
tests the assumption of monotone increasing and parallel item response functions); the
R2 test (which tests the unidimensionality of the latent trait); and the Si test (which
evaluates the contribution of each item to a possible lack of fit in case of poor model
fit).

Few computer programs allow for both estimating the parameters of IRT models
using MML and performing tests of fit. The SAS macroprogram %AnaQol (Hardouin
and Mesbah 2007) and the R library ltm (Rizopoulos 2006) estimate the parameters
of a PCM using MML but do not test the fit. Hardouin (2007) proposed the raschtest

command for estimating parameters of a Rasch model and for testing the fit to the
observed data. However, this command is suitable for only dichotomous items and
does not estimate the parameters of a PCM or an RSM. With the gllamm command
(Rabe-Hesketh, Pickles, and Taylor 2000; Zheng and Rabe-Hesketh 2007), one can es-
timate the parameters of a PCM or an RSM using MML, but it is not adapted for testing
the fit.

In this article, we present a command, pcmodel, for modeling a latent process using
PCM or RSM and estimating its parameters using MML. This command allows for in-
troducing covariates possibly affecting the individual’s latent trait (for example, group
covariates) and assists in the interpretation of their effect (by estimating pseudo-type-
III sum of squares for these covariates and the proportion of the latent-trait variance
they can explain). An additional command, pcmtest, tests the fit of a PCM or an RSM

to observed data using both R1 and Si tests. pcmtest can be used after the pcmodel

command but also after the irt pcm and irt rsm commands.
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2 PCM

Let’s consider a questionnaire consisting of k polytomous items. Each item j (j =
1, . . . , k) comprises mj ordered response categories. The PCM defines the probability
of observing the lth (l = 0, 1, . . . ,mj) response category to the jth item as a function
of the latent trait (considered as a random-effects covariate assumed to follow a nor-
mal distribution with mean μ—usually constrained to 0—and variance σ2) and of the
difficulties associated with each of the item response categories δjl (l > 0) (considered
as fixed-effects covariates). δjl can be interpreted as the value of the latent trait of an
individual with equal probability of choosing the (l − 1)th or the lth response for the
jth item.

P (Xij = l|θ, δj) =
exp

(
lθ −

l∑
a=1

δja

)
mj∑
b=0

exp

(
bθ −

b∑
a=1

δja

) θ ∼ N (μ, σ2)

Group covariates can be included in such a model for explaining variations of the
latent trait. When one introduces covariates, the latent trait is split into two parts, the
first one corresponding to the component explained by the observed covariate values and
the second one to the residual component explained by individual variation (Christensen
2007).

Consider a set of n covariates possibly associated with the latent trait. ci is the
indicator vector of dimension n specifying the observed values of the k covariates for
the ith individual, and β is the vector of dimension n of the regression parameters. The
latent trait is equal to θ = β′ci + θRes with θRes ∼ N (0, σ2

Res). A PCM including group
covariates can then be written as follows:

P (Xij = l|β, ci, θRes, δj) =

exp

{
l(β′ci + θRes)−

l∑
a=1

δja

}
mj∑
b=0

exp

{
b(β′ci + θRes)−

b∑
a=1

δja

}
θRes ∼ N (0, σ2

Res)

The effects of group covariates—considered as fixed effects—can then be classically
tested using Wald tests.

3 RSM

The RSM is a special case of the PCM. With this model, for example suitable for items
with the same response categories, the item difficulties are split into two parts: one
based on the item, δj , and the other based on the response category, τl. An identifiability
constraint for τl can be τ1 = 0. Then, δj represents the first-step difficulty for item j,
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and τl (l = 1, 2, . . . ,m) represents the extrastep difficulty of subsequent steps compared
with the first step. An RSM including group covariates can then be written as follows:

P (Xij = l|β, ci, θRes, δj , τ ) =

exp

{
l(β′ci + θRes)−

l∑
a=1

(δj + τa)

}
mj∑
b=0

exp

{
b(β′ci + θRes)−

b∑
a=1

(δj + τa)

}
θRes ∼ N (0, σ2

Res)

4 Interpreting the effect of covariates included in a PCM
or an RSM

Usually, interpreting the effect of a covariate is performed using a two-steps procedure.
First, the statistical significance is checked through the p-value. Then, if significant,
the covariate’s order of magnitude is evaluated for determining whether this effect has
practical implications in real life.

Checking the statistical significance of a covariate introduced in a Rasch-family
model can be easily performed using Wald tests. However, interpreting its magnitude
is quite a challenge because that refers to unobservable latent-variable magnitude.

Nevertheless, solutions can be proposed for assisting in such an interpretation. For
example, the estimated latent-trait variance can be partitioned into different compo-
nents: parts explained by covariates and a residual part. Thus the proportion of latent-
trait variance explained by introducing a covariate in the PCM can be fit through the
estimate of the pseudo-type-III sum of squares associated with this covariate.

The pseudo-type-III sum of squares associated with a given covariate can be fit
using nested models: one containing all the covariates to be introduced (full model) and
another containing all of these covariates except the studied one (reduced model). The
pseudo-type-III sum of squares is then computed as the difference between the residual
sum of squares of the reduced model and the residual sum of squares of the full model.
The proportion of latent-trait variance explained by introducing a covariate can finally
be estimated as the ratio between the pseudo-type-III sum of squares and the residual
sum of squares of the reduced model.

5 Tests of fit
5.1 Tests of fit computation

Testing the fit of a PCM or an RSM is one of the big issues when estimating parameters
using MML procedures. Few tests of fit have been proposed, except the R1m test (testing
the assumption of monotone increasing and parallel item response functions), the R2m
test (testing the latent-trait unidimensionality), and the Si test (identifying the items
contributing to a possible lack of fit) (Glas and Verhelst 1995).
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We propose two tests in pcmtest: the R1m test and the Si test. These tests are
based on grouping the individuals into G mutually exclusive subgroups by partitioning
the latent traits in continuous and disjoint regions. Because the score is a sufficient
statistic of the latent trait with the Rasch-family models, these subgroups are created
by partitioning the observed scores of the studied questionnaire (Glas 1988). Then, the
R1m and Si tests can be computed based on the differences observed in each region g
(g ∈ {1, . . . , G}) between the observed and expected number (based on a PCM or an
RSM) of individuals responding l (l ∈ {0, . . . ,mj}) to the item j.

These two tests are based on the linear function

d = N1/2U′
{
p− π

(
φ̂
)}

where N is the total number of individuals, φ̂ is a vector of MML estimates of the model
parameters, π(φ̂) is the vector of the response pattern probabilities evaluated at φ̂, p
is the associated vector of observed proportions, and U is the contrast matrix based on
whether the performed test is the R1m test or the Si test.

The generalized Pearson statistic can then be written as

Q = d′W−d

where W = U′D̂πU and D̂π is the diagonal matrix of the π(φ̂) elements. Q then has

an asymptotic chi-squared distribution of rank(U′D̂πU)-order(φ)-1 degrees of freedom.

The differences between the R1m and the Si tests are therefore based on the consti-
tution of the contrast matrix U. For the R1m test, this contrast matrix is defined as
a block diagonal matrix with U = (U1 ⊕ . . . ⊕UG). Each of the Ug is constructed so
that Ug = [Tg

1|T
g
2]. T

g
1 is the complete disjunctive table of the item responses for each

pattern response observable in the g subgroup. Tg
2 is the complete disjunctive table of

the possible scores for each pattern response observable in the g subgroup.

For example, consider a questionnaire composed of 3 items. Item 1 and item 2 have
2 response categories (0 and 1), whereas item 3 has 3 response categories (0, 1, and 2).
The possible scores range from 0 to 4. We consider 2 subgroups, the first corresponding
to individuals with scores ranging from 0 to 2 and the second to individuals with scores
ranging from 3 to 4. Eight response patterns may lead to a score compatible with the
first subgroup. Four response patterns may lead to a score compatible with the second
subgroup.
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T1
1 can be defined as follows (r = 0 means response to the item equal to 0):

item 1 item 2 item 3
r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 2
1 0 1 0 1 0 0
0 1 1 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 1 0
0 1 0 1 1 0 0
0 1 1 0 0 1 0
1 0 0 1 0 1 0
1 0 1 0 0 0 1

T1
2 can be defined as follows (s = 0 means score equal to 0):

s = 0 s = 1 s = 2
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1

Thus U1 = [T1
1|T1

2] is shown below:

1 0 1 0 1 0 0 1 0 0
0 1 1 0 1 0 0 0 1 0
1 0 0 1 1 0 0 0 1 0
1 0 1 0 0 1 0 0 1 0
0 1 0 1 1 0 0 0 0 1
0 1 1 0 0 1 0 0 0 1
1 0 0 1 0 1 0 0 0 1
1 0 1 0 0 0 1 0 0 1

U2 is constructed in the same way:

0 1 0 1 0 1 0 1 0
0 1 1 0 0 0 1 1 0
1 0 0 1 0 0 1 1 0
0 1 0 1 0 0 1 0 1
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Finally, the block diagonal matrix U = (U1 ⊕ . . .⊕UG) is shown below:

1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1

For the Si test, the contrast matrix U is constructed so that U = [T1|T2|Y]. T1

is the complete disjunctive table of the item responses for each pattern response. T2 is
the complete disjunctive table of the possible scores for each pattern response. Thus,
for a given survey and regardless of the tested item, T1 and T2 will always be the same.
Y contains the relevant contrasts based on the G predefined subgroups. Y is therefore
constructed as a block diagonal matrix with Y = (Y1 ⊕ . . .⊕YG). Yg is the complete
disjunctive table of the possible responses of the tested item for each pattern response
observable in the g subgroup.

Let’s continue the previous example to test the contribution of the first item to a
possible lack of model fit. The U matrix for such a test is shown below:

1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0
0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0
0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0
1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0
0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1
0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1
1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1

5.2 Power issues for tests of fit

Interpreting these tests of fit can be facilitated by estimating their a posteriori power.
For example, if such a test is performed on a very large sample size, the rejection of
the null hypothesis can be due either to the existence of a truly important inadequacy
of the model to the data or to an inadequacy of minimal importance that has become
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statistically significant given the excessive sample size (this situation can be related to
a problem of overpower).

Such an a posteriori power is estimated using the noncentral chi-squared distribu-
tion (Patnaik 1949; Satorra and Saris 1985). Under the null hypothesis, the R1m and Si
statistics follow an asymptotic chi-squared distribution. Under the alternative hypoth-
esis, these test statistics follow an asymptotic noncentral chi-squared distribution with
noncentrality parameter equal to the observed likelihood-ratio chi-squared statistic.

Let λ be the noncentrality parameter, η the number of degrees of freedom, and χ2
t

the threshold for rejecting the null hypothesis at a significance level equal to α. Let
Fχ2

λ,η be the cumulative distribution function of a noncentral chi-squared distribution
with noncentrality parameter equal to λ and η degrees of freedom. The a posteriori
power of a test of fit with a type I error equal to α is 1− Fχ2

λ,η(χ
2
t )

Assuming an invariant distribution of the observed patterns of item responses, we
can estimate the sample size for obtaining a given power and estimating a chi-squared
statistic corresponding to a different sample size or to a different a posteriori power.
Estimating a chi-squared statistic for a different sample size under the assumption of an
identical pattern of item response distribution simply involves weighting the observed
chi-squared statistic by the ratio between the desired sample size and the observed
sample size.

6 The pcmodel command

The pcmodel command estimates the parameters of a PCM or an RSM using MML and
includes covariates that can explain individuals’ latent-trait differences. This command
can run under Stata 11 and later.

6.1 Syntax

The syntax of the pcmodel command is detailed below:

pcmodel varlist
[
if
] [

in
] [

, categorical(varlist) continuous(varlist)

difficulties(matrix list) iterate(#) adapt robust from(matrix) rsm

estimateonly nip(#) trace level(#)
]

The gllamm (Rabe-Hesketh, Skrondal, and Pickles 2004, 2005) and gausshermite

(Hardouin 2007) commands must be installed for pcmodel to work; type ssc install

gllamm and ssc install gausshermite.



472 PCM estimation and tests of fit

6.2 Options

categorical(varlist) specifies the categorical covariates included in the PCM or the
RSM (that is, the potential categorical covariates that might explain latent-trait
differences between individuals).

continuous(varlist) lists the continuous covariates included in the PCM or the RSM.

difficulties(matrix list) specifies a list of row vectors containing the known values of
each item difficulty (if they are known). If the difficulties() option is specified,
there must be a vector for each item, with the same name as the corresponding
items. If the difficulties() option is not filled, the item difficulties are considered
unknown and are estimated during the analysis. This option cannot be used with
the rsm option.

iterate(#) specifies the (maximum) number of iterations. With the adapt option,
the iterate(#) option will cause pcmodel to skip the Newton–Raphson iterations
usually performed at the end without updating the quadrature locations.

adapt causes adaptive quadrature to be used instead of ordinary quadrature.

robust specifies that the Huber/White/sandwich estimator of the covariance matrix of
the parameter estimates be used.

from(matrix) specifies a row vector to be used for the initial values of the estimation
iterative process. This vector must have exactly the number of parameters to be
estimated, starting with the difficulties parameters, followed by the parameters as-
sociated with the covariates, and ending with the estimated standard deviation of
the latent trait.

rsm performs an RSM instead of a PCM.

estimateonly specifies that the marginal McFadden’s pseudo-R2 and the type-III sum
of squares computations not be performed.

nip(#) specifies the number of integration points to be used for each integral or sum-
mation. Only the following degrees are available: 5, 7, 9, 11, and 15.

trace causes more output to be displayed. Before estimation begins, details of the
specified model are displayed. In addition, a detailed iteration log is shown including
parameter estimates and log-likelihood values for each iteration.

level(#) sets confidence level. The default is level(95).

6.3 Displayed outputs

pcmodel displays a first table corresponding to the estimation of the latent-trait pa-
rameters and a second table corresponding to the estimations of the items response
category difficulties. If covariates are included in the model, their effects are displayed
in the first table, together with the type-III sum of squares associated with them and
the percentage of latent-trait variance they explain.
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6.4 Stored results

pcmodel stores the following in e():

Scalars
e(N) number of observations
e(ll) marginal log-likelihood
e(cn) condition number
e(Nit) number of items
e(Ncat) number of categorical covariates
e(Ncont) number of continuous covariates
e(sigma) estimated standard deviation of the latent trait
e(Varsigma) variance of the estimated standard deviation of the latent trait

Matrices
e(theta) coefficient vector of the parameters associated with the latent-trait covariates

(if no covariate is included in the model, value of the average latent trait)
e(Vartheta) covariance matrix for the latent-trait covariates.
e(delta) estimated difficulty parameters
e(Vardelta) covariance matrix for the estimated difficulty parameters
e(b) overall estimated parameters of the PCM (or RSM)
e(V) covariance matrix for the overall estimated parameters

7 The pcmtest command

The pcmtest command tests the fit of a PCM or an RSM to the observed data. The
PCM or RSM should have been fit with one of the following commands before using the
pcmtest command: pcmodel, irt pcm, or irt rsm.

7.1 Syntax

The syntax of the pcmtest command is

pcmtest
[
, group(numlist) nfit(#) power(#) alpha(#) approximation new

sitest graphics filegraph(filegraph
[
, replace

]
)
]

7.2 Options

group(numlist) defines the groups of individuals for performing fit tests by specifying
the upper score limit of each group. If group() is not specified, groups are formed
based on the score quartiles.

nfit(#) defines the sample size for which the test power must be calculated (nfit()
deals with overpower problems when fit tests are performed on large samples). If
nfit() is not filled, tests are performed on only the observed sample without ad-
justing sample size.

power(#) estimates the sample size required for performing the R1m test at a given
power. If power() is not filled, tests are performed on only the observed sample
without adjusting power.
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alpha(#) specifies the type I error used to perform the tests of fit. The default is
alpha(0.05).

approximation specifies that the pattern response probabilities computation must be
performed using simulations instead of Gauss–Hermite quadratures. This option
shortens the computation time when the number of item or response categories is
high.

new changes the computation methodology of the pattern response probabilities between
several tests of fit rather than using the pattern response probabilities stored in Stata
memory.

sitest performs item-specific test of fit (Si tests).

graphics displays several graphs: the distribution of the latent trait depending on the
individual scores, the graph of MAP, the graph of the group contributions to the R1m
statistic, and the graph of the observed and expected score distribution.

filegraph(filegraph
[
, replace

]
) indicates the path and filename for saving the graphs

(four graphs are stored: filegraph LT Sc, filegraph MAP, filegraph Contrib, and file-
graph Score Distrib).

7.3 Displayed outputs

pcmtest displays a first table corresponding to the R1m test and a second table cor-
responding to the Si tests for each of the items. Tests are performed on the observed
sample and, depending on the chosen options, possibly on virtual samples with sample
size set to nfit() or sample size set so that the R1m test power is equal to power().

7.4 Stored results

pcmtest stores the following in r():

Matrices
r(globalFitTot) R1m test results performed on the observed sample
r(itemFitTot) Si test results performed on the observed sample
r(globalFitPo) R1m test results performed on a virtual sample with sample size set

so that the R1m test power is equal to power()

r(itemFitPo) Si test results performed on a virtual sample with sample size set
so that the R1m test power is equal to power()

r(globalFitNu) R1m test results performed on a virtual sample with sample size
set to nfit()

r(itemFitNu) Si test results performed on a virtual sample with sample size set
to nfit()

8 Example

The Gambling Attitudes and Beliefs Scale (Breen and Zuckerman 1999; Bouju et al.
2014) is used to illustrate both pcmodel and pcmtest. The scale is a 35-item question-
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naire measuring a wide range of cognitive biases, irrational beliefs, subjective excite-
ment, and positive attitudes experienced through gambling.

In this example, we analyze only the emotion subscale, measuring the subjective
excitement experienced during gambling. This subscale consists of five items recorded
under the names gabs1, gabs18, gabs26, gabs27, and gabs35. These items are recorded
on a four-point scale ranging from “strongly agree” to “strongly disagree”.

Players are characterized using three variables: gender (Gender = 1 for male and
Gender = 2 for female); favorite type of game (FavourGame = 1 for pure chance games,
FavourGame = 2 for chance games with quasiskill, and FavourGame = 3 for chance games
with elements of skill); and the characteristics of their game practice (PracticeChar = 1
for nonpathological gamblers, PracticeChar = 2 for untreated pathological gamblers,
and PracticeChar = 3 for pathological gamblers treated for their gambling practice).

We first perform a PCM including the three considered covariates:

. use data

. pcmodel gabs1 gabs18 gabs26 gabs27 gabs35,
> categorical(Gender FavourGame PracticeChar)

Iteration 0: log likelihood = -4124.2257 (not concave)
Iteration 1: log likelihood = -3656.9816 (not concave)
Iteration 2: log likelihood = -3514.1578
Iteration 3: log likelihood = -3465.3162
Iteration 4: log likelihood = -3463.7758
Iteration 5: log likelihood = -3463.7726
Iteration 6: log likelihood = -3463.7726

McFadden´s pseudo R square and type III Sums of squares computation
for Gender covariate
for FavourGame covariate
for PracticeChar covariate

Model : Partial Credit Model

log likelihood: -3463.773
Marginal McFadden´s pseudo R2: 8.6 %
Number of individuals: 628
Number of items: 5
Number of covariates: 3

Parameters of the Latent trait distribution:

Identifiability constraint: latent trait for Gender = 1,
> FavourGame = 1, PracticeChar = 1: set to 0

Variance of the Latent trait: Sigma=0.579 (SE:0.070 )
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Latent trait group effect:

Coef. S.E. z P>|z| [95% C.I.]

Gender:
Gender: 1 0 . . . . .
Gender: 2 0.169 0.094 1.80 0.072 0.077 0.261

FavourGame:
FavourGame: 1 0 . . . . .
FavourGame: 2 -0.008 0.097 -0.08 0.934 -0.103 0.087
FavourGame: 3 0.286 0.126 2.27 0.023 0.163 0.409

PracticeChar:
Practice~r: 1 0 . . . . .
Practice~r: 2 1.040 0.100 10.38 0.000 0.942 1.138
Practice~r: 3 1.260 0.101 12.45 0.000 1.161 1.359

Proportion of latent trait variance explained by covariates

SS.III df V.exp. R2.exp.

Gender: 25.563 1 1.5% 0.5%
FavourGame: 5.225 2 0.3% 12.1%
PracticeChar: 956.797 2 35.7% 28.8%

SS.res df
Model without cov. 2693.981 2983
Full model 1724.453 2978
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Items difficulty parameters:

Item Coef. S.E. [95% C.I.]

gabs1:
response: 2 1.077 0.142 0.939 1.216
response: 3 0.834 0.157 0.681 0.987
response: 4 2.080 0.179 1.905 2.255

gabs18:
response: 2 1.535 0.136 1.402 1.668
response: 3 2.006 0.182 1.828 2.183
response: 4 2.153 0.231 1.928 2.378

gabs26:
response: 2 0.531 0.155 0.380 0.682
response: 3 0.306 0.154 0.155 0.456
response: 4 1.309 0.153 1.160 1.458

gabs27:
response: 2 1.061 0.138 0.927 1.196
response: 3 1.176 0.158 1.022 1.330
response: 4 2.224 0.192 2.037 2.411

gabs35:
response: 2 0.612 0.148 0.468 0.756
response: 3 0.599 0.153 0.449 0.748
response: 4 1.483 0.160 1.327 1.639

Then, we proceed to the test of fit. To obtain accurate statistics of the test, we form
groups of at least 60 individuals based on the scores. The ranges of the scores in each
of these groups is 0, 1–3, 4–5, 6–7, 8–9, and 10–15.

. pcmtest, power(0.95) group(0 3 5 7 9 15) sitest
Performing R1m test

1024 response pattern probabilities to compute
Percentage of completion
----|---10%---|---20%---|---30%---|---40%---|---50%
.................................................. 50
.................................................. 100

U matrix computation
W matrix computation
Performing Si test for the 1th item
----|---25%---|---50%---|---75%---|---100%
........................................
Performing Si test for the 2th item
----|---25%---|---50%---|---75%---|---100%
........................................
Performing Si test for the 3th item
----|---25%---|---50%---|---75%---|---100%
........................................
Performing Si test for the 4th item
----|---25%---|---50%---|---75%---|---100%
........................................
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Performing Si test for the 5th item
----|---25%---|---50%---|---75%---|---100%
........................................

Global tests of the fit : test R1m
groups : 0 3 5 7 9 15
Number of individuals with missing data : 28 (4.46%)

N = 600 N = 113
df R1m p-val Power R1m p-val Power

R1m 70 262.7 0.0000 1.0000 49.2 0.9723 0.9500

Items specific tests of the fit : tests Si

N = 600 N = 113
Item df Si p-val Power Si p-val Power

gabs1 : 15 66.2 0.0000 1.0000 12.4 0.6498 0.5694

gabs18 : 15 128.7 0.0000 1.0000 24.1 0.0637 0.9075

gabs26 : 15 81.3 0.0000 1.0000 15.2 0.4358 0.6849

gabs27 : 15 120.9 0.0000 1.0000 22.6 0.0925 0.8841

gabs35 : 15 80.9 0.0000 1.0000 15.1 0.4408 0.6823

The R1m global test of fit and all the Si item-oriented tests performed on the ob-
served sample—that is, on the 600 individuals who completed all the items—show a
bad fit. The estimated power of these tests is almost 100%. The large size of the studied
sample is probably responsible for overpowering. Such an overpowering issue could be
solved by performing tests on a smaller sample with the same distribution of patterns of
item responses. The required sample size to perform the R1m test with a power equal
to 95% is 113 subjects. With such a sample size, the tests of fit are no longer significant,
which allows us to use and interpret the previous results from the pcmodel command.

pcmodel displays two tables of results. The first one corresponds to the estimates
of the latent-trait distribution parameters and the association between the gambling
subjective excitement and the considered covariates. The second table corresponds to
the estimates of the difficulty parameters associated with each of the responses categories
of the considered items.

In the first table, no association between gender and gambling subjective excitement
is highlighted because the p-value associated with the “gender” covariate is greater than
5%. A statistical association is found between the gamblers’ favorite types of games and
their subjective excitement experienced during gambling. Those who play to chance
games with elements of skill present a significantly higher excitement than pure chance
gamers (p-value = 0.02). Finally, the gamblers’ game-practice characteristics are statis-
tically associated with their subjective excitement experienced: pathological gamblers
(treated or untreated) present a significantly higher excitement than nonpathological
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gamblers (p-value < 10−3). From a statistical point of view, adjusting the gambling
subjective excitement level on both the favorite type of game and the game-practice
characteristics seems relevant. This can be confirmed by performing a likelihood-ratio
test using lrtest.

Yet these statistical associations do not appear to explain equivalent parts of the
gambling subjective excitement: the introduction in the model of the FavourGame vari-
able explains only 0.3% of the overall experienced excitement variance, whereas the
gamblers’ game-practice characteristics explains about 36% of the overall experienced
excitement variance. With these results, some may wonder whether it is necessary to
adjust the gambling subjective excitement on the gamblers’ favorite type of game. How-
ever, we should recall that the estimate of latent-trait variance proportion explained by
introducing a covariate is only a tool for assisting in interpreting the effect of a covariate
included in the model—not necessarily a rule for constructing statistical models.

Finally, we can explore whether the untreated pathological gamblers present an
equivalent excitement as the pathological gamblers treated for their gambling practice.
We can classically resolve such an issue using linear combinations of the covariate cat-
egory estimators just after the pcmodel command with the Stata lincom command:

. lincom PracticeChar_3-PracticeChar_2

( 1) - [estimates]PracticeChar_2 + [estimates]PracticeChar_3 = 0

theta Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .2201164 .1007149 2.19 0.029 .0227187 .417514

Such linear combinations highlight the fact that treated and untreated pathological
gamblers present a significantly different level of excitement (p-value = 2.9%).

9 Discussion

The pcmodel and pcmtest commands provide features not previously available in a sta-
tistical software, such as the inclusion of covariates in a PCM or an RSM, the assistance
for interpreting the parameters associated with these covariates (by estimating the per-
centage of latent-trait variability explained by these covariates), and the implementation
of tests of fit adapted for a PCM or an RSM estimated using MML.

Note that when data are missing, all the information of the data is used for estimating
the parameters of the PCM or RSM: all the observed item responses are used even if
questionnaires are incompletely filled out. However, the tests of fit can be performed
on only the complete cases. Individuals who have not responded to all the items are
necessarily excluded when the R1m and Si tests of fit are performed.
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One limitation of the proposed commands is that only the first-order tests of fit (that
is, the R1m and the Si tests) are proposed. Other important tests are not yet available
with pcmtest, such as the second-order R2m test, which tests the unidimensionality
principle underlying both a PCM and an RSM. Such a test should be developed and
included in pcmtest in the future. Furthermore, other tests could also be implemented,
such as the Martin Lof test for testing the unidimensionality assumption, the Anferson
test for testing the specific objectivity, and other fit measurements such as the infit and
outfit indexes.
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