Research
Topics Publications In progress publications CommunicationsPackages
AnaQol Project PRO-online R Packages Online R-packageLife of the unit
Projects Collaborations PhD thesis Traineeships Traineeships propositions SeminarsNext seminars
Last publications
02 septembre 2020
19 novembre 2019
30 octobre 2019
02 octobre 2019
01 octobre 2019
Updated
05 décembre 2019Modèles conjoints pour données longitudinales et données de survie incomplètes appliqués à l’étude du vieillissement cognitif
Auteurs
- Dantan Etienne - Associate Professor, PhD - INSERM UMR 1246 – SPHERE Nantes University
Description
Lien
Résumé
Dans l’étude du vieillissement cérébral, le suivi des personnes âgées est soumis à une forte sélection avec un risque de décès associé à de faibles performances cognitives. La modélisation de l’histoire naturelle du vieillissement cognitif est complexe du fait de données longitudinales et données de survie incomplètes. Par ailleurs, un déclin accru des performances cognitives est souvent observé avant le diagnostic de démence sénile, mais le début de cette accélération n’est pas facile à identifier. Les profils d’évolution peuvent être variés et associés à des risques différents de survenue d’un événement ; cette hétérogénéité des déclins cognitifs de la population des personnes âgées doit être prise en compte. Ce travail a pour objectif d’étudier des modèles conjoints pour données longitudinales et données de survie incomplètes afin de décrire l’évolution cognitive chez les personnes âgées. L’utilisation d’approches à variables latentes a permis de tenir compte de ces phénomènes sous-jacents au vieillissement cognitif que sont l’hétérogénéité et l’accélération du déclin. Au cours d’un premier travail, nous comparons deux approches pour tenir compte des données manquantes dans l’étude d’un processus longitudinal. Dans un second travail, nous proposons un modèle conjoint à état latent pour modéliser simultanément l’évolution cognitive et son accélération pré-démentielle, le risque de démence et le risque de décès.
Abstract
In cognitive ageing study, older people are highly selected by a risk of death associated with poor cognitive performances. Modeling the natural history of cognitive decline is difficult in presence of incomplete longitudinal and survival data. Moreover, the non observed cognitive decline acceleration begining before the dementia diagnosis is difficult to evaluate. Cognitive decline is higly heterogeneous, e.g. there are various patterns associated with different risks of survival event. The objective is to study joint models for incomplete longitudinal and survival data to describe the cognitive evolution in older people. Latent variable approaches were used to take into account the non-observed mecanismes, e.g. heterogeneity and decline acceleration. First, we compared two approaches to consider missing data in longitudinal data analysis. Second, we propose a joint model with a latent state to model cognitive evolution and its pre-dementia acceleration, dementia risk and death risk.
Publications ayant le même axe principal de recherche (Statistique appliquée)
Largeau B ,Le Tilly O ,Sautenet B ,Salmon Gandonnière C ,Barin-Le Guellec C ,Ehrmann S (2019) Arginine Vasopressin and Posterior Reversible Encephalopathy Syndrome Pathophysiology: the Missing Link?. Mol Neurobil, 56(10): 6792-6806.Goumard A ,Sautenet B ,Bailly E ,Miquelestorena-Standley E ,Proust B ,Longuet H ,Binet L ,Baron C ,Halimi JM ,Buchler M ,Gatault P (2019) Increased risk of rejection after basiliximab induction in sensitized kidney transplant recipients without pre-existing donor-specific antibodies - a retrospective study. Transpl Int, 32(8): 820-30.Salmon Gandonnière C ,Helms J ,Le Tilly O ,Benz-de Bretagne I ,Bretagnol A ,Bodet-Contentin L ,Mercier E ,Halimi JM ,Benzékri-Lefèbvre D ,Meziani F ,Barin-Le Guellec C ,Ehrmann S , Clinical Research in Intensive Care and Sepsis - CRICS-TiggerSep (2019) Glomerular Hyper- and Hypofiltration During Acute Circulatory Failure: Iohexol-Based Gold-Standard Descriptive Study. Crit Care Med, 47(8): e623-e629. doi: 10.1097/CCM.0000000000003804..de Freminville J ,Vernier L ,Roumy J ,Patat F ,Gatault P ,Sautenet B ,Bailly E ,Chevallier E ,Barbet C ,Longuet H ,Mérieau E ,Baron C ,Buchler M ,Halimi JM (2019) The association between renal resistive index and premature mortality after kidney transplantation is modified by pre-transplant diabetes status: a cohort study. Nephrol Dial Transplant: pii: gfz067. doi: 10.1093/ndt/gfz067. [Epub ahead of print].Bayer G ,Von Tokarski F ,Thoreau B ,Bauvois A ,Barbet C ,Cloarec S ,Mérieau E ,Lachot S ,Garot D ,Bernard L ,Gyan E ,Perrotin F ,Pouplard C ,Maillot F ,Gatault P ,Sautenet B ,Rusch E ,Buchler M ,Vigneau C ,Fakhouri F ,Halimi JM (2019) Etiology and Outcomes of Thrombotic Microangiopathies. Clin J Am Soc Nephrol, 14(4): 557-66.Leducq S ,Giraudeau B ,Tavernier E ,Maruani A (2019) Topical use of mammalian target of rapamycin inhibitors in dermatology: A systematic review with meta-analysis. J Am Acad Dermatol, 80(3): 735-42.Rouve E ,Lakhal K ,Salmon Gandonnière C ,Jouan Y ,Bodet-Contentin L ,Ehrmann S (2018) Lack of impact of iodinated contrast media on kidney cell-cycle arrest biomarkers in critically ill patients. BMC Nephrol, 19(1): 308. doi: 10.1186/s12882-018-1091-2.Barbar S ,Clere-Jehl R ,Bourredjem A ,Hernu R ,Montini F ,Bruyère R ,Lebert C ,Bohé J ,Badie J ,Eraldi J ,Rigaud J ,Levy B ,Siami S ,Louis G ,Bouadma L ,Constantin JM ,Mercier E ,Klouche K ,du Cheyron D ,Piton G ,Annane D ,Jaber S ,van der Linden T ,Blasco G ,Mira J ,Schwebel C ,Chimot L ,Guiot P ,Nay M ,Meziani F , Helms J, Roger C, Louart B, Trusson R, Dargent A, Binquet C, Quenot JM ; IDEAL-ICU Trials Investigators and the CRICS TRIGGERSEP Network (2018) Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis. N Engl J Med, 379(15): 1431-42.SRLF Trial Group (2018) Impact of oversedation prevention in ventilated critically ill patients: a randomized trial-the AWARE study. Ann Intensive Care, 8(1): 93. doi: 10.1186/s13613-018-0425-3.Dibao-Dina C ,Caille A ,Giraudeau B (2018) Heterogeneous perception of the ethical legitimacy of unbalanced randomization by institutional review board members: a clinical vignette-based survey. Trials, 19(1): 440. doi: 10.1186/s13063-018-2822-1.Desmée S ,Mentré F ,Veyrat-Follet C ,Sebastien B ,Guedj J (2017) Using the SAEM algorithm for mechanistic joint models characterizing the relationship between nonlinear PSA kinetics and survival in prostate cancer patients. Biometrics, 73(1): 305-12.Dibao-Dina C ,Lebeau JP ,Huas D ,Boutitie F ,Pouchain D , French National College of Teachers in General Practice (2015) ESCAPE ancillary blood pressure measurement study 2: changes in end-digit preference after 2 years of a cluster randomized trial. Blood Press Monit, 20(6): 346-50.Dibao-Dina C ,Caille A ,Giraudeau B (2015) [Care and research: Are they ethically compatible?]. Presse Med, 44(11): 986-90.Dibao-Dina C ,Caille A ,Giraudeau B (2015) Unbalanced rather than balanced randomized controlled trials are more often positive in favor of the new treatment: an exposed and nonexposed study. J Clin Epidemiol, 68(8): 944-9.Dibao-Dina C ,Caille A ,Sautenet B ,Chazelle E ,Giraudeau B (2014) Rationale for unequal randomization in clinical trials is rarely reported: a systematic review. J Clin Epidemiol, 67(10): 1070-5.Feddag ML (2012) Pairwise marginal likelihood for the Bradley-Terry model. Statistical Theory and Practise : (under press).Feddag ML (2012) Generalized Estimating Equations to binary probit model. Communications in Statistics: Theory and Methods: (under press).Feddag ML (2012) Pairwise likelihood estimation for the normal ogive model with binary data. Advances in Statistical Analysis : (under press).Feddag ML (2012) Composite Marginal Likelihoods to the normal Bradley-Terry model. Communications in Statistics: Simulation and Computation , 41(3): 279-286.Bellanger L ,Husi P (2012) Statistical Tool for Dating and interpreting archaeological contexts using pottery. Journal of Archaeology Science, 39(4): 777-790.Dantan E ,Joly P ,Dartigues JF ,Jacqmin-Gadda H (2011) Joint model with latent state for longitudinal and multistate data. Biostatistics, 12(4): 723-736.Lebeau JP ,Pouchain D ,Huas D ,Wilmart F ,Dibao-Dina C ,Dibao-Dina C ,Boutitie F (2011) ESCAPE-ancillary blood pressure measurement study: end-digit preference in blood pressure measurement within a cluster-randomized trial. Blood Press Monit, 16(2): 74-9.Feddag ML (2010) Composite likelihood estimation to probit latent traits models. Communications in Statistics: Theory and Methods: (under press).Baize D ,Bellanger L ,Tomassone R (2009) Relationships between concentrations of trace metals in wheat grains and soil soil analytical data. Agronomy for Sustainable Development, 29(2): 297-312.Mahévas S ,Bellanger L ,Trenkel V (2008) Cluster analysis of linear model coefficients under contiguity constraints for identifying spatial and temporal fishing effort patterns. Fisheries Research, 93(1): 29-38.Bellanger L ,Husi P ,Tomassone R (2008) A statistical approach for dating archaeological contexts. Journal of Data Science, 6(2): .Auget JL ,Balakrishnan N ,Mesbah M ,Molenberghs G (2007) Advances in Statistical Methods for the Health Sciences. , .Husi P ,Bellanger L (2007) De la modélisation à la datation du site 3 (château) de Tours. In L'archéologie de Tours : le site 3 (Eds H. Galiniée (dir.), P. Husi, J. Motteau ): Col. Recherche sur Tours, 9, Tours. (à paraître).Husi P ,Bellanger L (2007) De la modélisation à la datation de Rigny. In La fouille du site de Rigny (7e-19e s.). De la colonia de Saint-Martin de Tours au centre paroissial (Eds : E. Zadora-Rio, H. Galiniée): Col. Référentiels, co-éditée par la MSH-Paris et les Editions Epistèmes, Paris (à paraître).Bellanger L ,Husi P ,Tomassone R (2006) Une approche statistique pour la datation de contextes archéologiques. Revue de Statistique Appliquée(2): 65-81.Bellanger L ,Husi P ,Tomassone R (2006) Statistical aspects of pottery quantification for dating some archaeological contexts. Archaeometry, 48(1): 169-183.Bellanger L ,Baize D ,Tomassone R (2006) L'analyse des corrélation canoniques appliquée à des données environnementales. Revue de Statistique Appliquée(4): 7-40.Bellanger L ,Tomassone R (2004) Trend in High Tropospheric ozone Levels: application to Paris Monitoring Site. Statistics, 38(3): 217-241.Bellanger L ,Perera G (2003) Compound Poisson limit theorems for high-level exceedances of some non-stationary processes . Revue Bernoulli, 9(3): 497-515.
Publications liées à l'axe principal de recherche (Statistique appliquée)
Fournier MC ,Foucher Y ,Blanche P ,Legendre C ,Girerd S ,Ladrière M ,Morelon E ,Buron F ,Rostaing L ,Kamar N ,Mourad G ,Garrigue V ,Couvrat-Desvergnes G ,Giral M ,Dantan E (2019) Dynamic predictions of long-term kidney graft failure: an information tool promoting patient-centred care.. Nephrology Dialysis Transplantation: .Senage T ,Le Tourneau T ,Foucher Y ,Pattier S ,Michel M ,Mugniot A ,Perigaud C ,Carton F ,Al Habash O ,Baron O ,Roussel J (2014) Early Structural Valve Deterioration of Mitroflow aortic bioprosthesis : mode, incidence and impact on outcome in a large cohort of patients. Circulation, 130(23): 2012-20.Le Bourgeois A ,Labopin M ,Guillaume T ,Foucher Y ,Tessoulin B ,Malard F ,Ayari S ,Peterlin P ,Derenne S ,Herry P ,Cesbron A ,Gagne K ,Lodé L ,Illiaquer M ,Imbert-Marcille B ,Le Gouil S ,Moreau P ,Mothy M ,Chevallier P (2014) HHV-6 reactivation before engraftment is strongly predictive of graft failure after double umbilical cord blood allogeneic stem cell transplantation in adults. Experimental Hematology, 42(11): 945-54.Rabot N ,Buchler M ,Foucher Y ,Moreau A ,Debiais C ,Machet M ,Kessler M ,Morelon E ,Thierry A ,Legendre C ,Rivalan J ,Kamar N ,Dantal J (2014) CNI withdrawal for post-transplant lymphoproliferative disorders in kidney transplant is an independent risk factor for graft failure and mortality. Transplant Internationnal, 27(9): 956-65.Bellanger L ,Victorri-Vigneau C ,Pivette J ,Jolliet P ,Sébille V (2013) Discrimination of psychotropic drugs over-consumers using a threshold exceedance based approach. Statistical Analysis and Data-Mining, 6(2): 91-101.